scholarly journals Human Herpesvirus 8 Viral Interleukin-6 Interacts with Splice Variant 2 of Vitamin K Epoxide Reductase Complex Subunit 1

2011 ◽  
Vol 86 (3) ◽  
pp. 1577-1588 ◽  
Author(s):  
D. Chen ◽  
E. Cousins ◽  
G. Sandford ◽  
J. Nicholas
2015 ◽  
Vol 89 (15) ◽  
pp. 7979-7990 ◽  
Author(s):  
Daming Chen ◽  
John Nicholas

ABSTRACTThe interleukin-6 homologue (viral interleukin-6 [vIL-6]) of human herpesvirus 8 is implicated in viral pathogenesis due to its proproliferative, inflammatory, and angiogenic properties, effected through gp130 receptor signaling. In primary effusion lymphoma (PEL) cells, vIL-6 is expressed latently and is essential for normal cell growth and viability. This is mediated partly via suppression of proapoptotic cathepsin D (CatD) via cocomplexing of the endoplasmic reticulum (ER)-localized CatD precursor, pro-CatD (pCatD), and vIL-6 with the previously uncharacterized ER membrane protein vitamin K epoxide reductase complex subunit 1 variant 2 (VKORC1v2). vIL-6 suppression of CatD occurs also during reactivated productive replication in PEL cells and is likely to contribute to proreplication functions of vIL-6. Here, we report that vIL-6 suppresses CatD through vIL-6, VKORC1v2, and pCatD association with components of the ER-associated degradation (ERAD) machinery. In transfected cells, expression of vIL-6 along with CatD led to proteasome-dependent (inhibitor-sensitive) decreases in CatD levels and the promotion of pCatD polyubiquitination. Depletion of particular ERAD-associated isomerases, lectins, and translocon components, including ERAD E3 ubiquitin ligase HRD1, diminished suppression of CatD by vIL-6. Coprecipitation assays identified direct or indirect interactions of VKORC1v2, vIL-6, and pCatD with translocon proteins (SEL1L and/or HRD1) and ERAD-associated lectins OS9 and XTP3-B. Endogenous CatD expression in PEL cells was increased by depletion of ERAD components, and suppression of CatD by vIL-6 overexpression in PEL cells was dependent on HRD1. Our data reveal a new mechanism of ER-localized vIL-6 activity and further characterize VKORC1v2 function.IMPORTANCEHuman herpesvirus 8 (HHV-8) viral interleukin-6 (vIL-6), unlike cellular IL-6 proteins, is secreted inefficiently and sequestered mainly in the endoplasmic reticulum (ER), from where it can signal through the gp130 receptor. We have recently reported that vIL-6 also associates with a novel membrane protein termed vitamin K epoxide reductase complex subunit 1 variant 2 (VKORC1v2) and mediates suppression of VKORC1v2-cointeracting cathepsin D, a stress-released proapoptotic protein negatively impacting HHV-8 latently infected primary effusion lymphoma (PEL) cell viability and reactivated virus productive replication. Here, we have examined the mechanistic basis of the VKORC1v2–vIL-6 interaction-dependent suppression of cathepsin D and have found that this novel activity of vIL-6 is mediated through coassociation of VKORC1v2, procathepsin D, and vIL-6 with components of the ER-associated degradation (ERAD) machinery. Our findings provide information of significance for potential antiviral and therapeutic targeting of VKORC1v2-mediated vIL-6 activities and also indicate the nature of VKORC1v2 function in normal cell biology.


2000 ◽  
Vol 61 (3) ◽  
pp. 332-335 ◽  
Author(s):  
Yasuko Mori ◽  
Norihiro Nishimoto ◽  
Mika Ohno ◽  
Reiko Inagi ◽  
Panadda Dhepakson ◽  
...  

2002 ◽  
Vol 68 (3) ◽  
pp. 404-411 ◽  
Author(s):  
Jian Song ◽  
Takako Ohkura ◽  
Masamichi Sugimoto ◽  
Yasuko Mori ◽  
Reiko Inagi ◽  
...  

2020 ◽  
Vol 94 (19) ◽  
Author(s):  
Qian Li ◽  
Qiwang Xiang ◽  
Daming Chen ◽  
John Nicholas

ABSTRACT Human herpesvirus 8 (HHV-8) viral interleukin-6 (vIL-6) is a cytokine that is poorly secreted and localized largely to the endoplasmic reticulum (ER). It has been implicated, along with other HHV-8 proinflammatory and/or angiogenic viral proteins, in HHV-8-associated Kaposi’s sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman’s disease (MCD), in addition to an MCD-related disorder involving systemic elevation of proinflammatory cytokines, including vIL-6 and human IL-6 (hIL-6). In these diseases, lytic (productive) replication, in addition to viral latency, is believed to play a critical role. Proreplication activity of vIL-6 has been identified experimentally in PEL and endothelial cells, but the relative contributions of different vIL-6 interactions have not been established. Productive interactions of vIL-6 with the IL-6 signal transducer, gp130, can occur within the ER, but vIL-6 also interacts in the ER with a nonsignaling receptor called vitamin K epoxide reductase complex subunit 1 variant 2 (VKORC1v2), calnexin, and VKORC1v2- and calnexin-associated proteins UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) and glucosidase II (GlucII). Here, we report the systematic characterization of interaction-altered vIL-6 variants and the lytic phenotypes of recombinant viruses expressing selected variants. Our data identify the critical importance of vIL-6 and its ER-localized activity via gp130 to productive replication in inducible SLK (epithelial) cells, absence of detectable involvement of vIL-6 interactions with VKORC1v2, GlucII, or UGGT1, and the insufficiency and lack of direct contributory effects of extracellular signaling by vIL-6 or hIL-6. These findings, obtained through genetics-based approaches, complement and extend previous analyses of vIL-6 activity. IMPORTANCE Human herpesvirus 8 (HHV-8)-encoded viral interleukin-6 (vIL-6) was the first viral IL-6 homologue to be identified. Experimental and clinical evidence suggests that vIL-6 is important for the onset and/or progression of HHV-8-associated endothelial-cell and B-cell pathologies, including AIDS-associated Kaposi’s sarcoma and multicentric Castleman’s disease. The protein is unusual in its poor secretion from cells and its intracellular activity; it interacts, directly or indirectly, with a number of proteins beyond the IL-6 signal transducer, gp130, and can mediate activities through these interactions in the endoplasmic reticulum. Here, we report the characterization with respect to protein interactions and signal-transducing activity of a panel of vIL-6 variants and utilization of HHV-8 mutant viruses expressing selected variants in phenotypic analyses. Our findings establish the importance of vIL-6 in HHV-8 productive replication and the contributions of individual vIL-6-protein interactions to HHV-8 lytic biology. This work furthers understanding of the biological significance of vIL-6 and its unique intracellular interactions.


AIDS ◽  
1999 ◽  
Vol 13 (14) ◽  
pp. 1851-1855 ◽  
Author(s):  
Julia R. Gage ◽  
Elizabeth Crabb Breen ◽  
Angela Echeverri ◽  
Larry Magpantay ◽  
Tadamitsu Kishimoto ◽  
...  

2016 ◽  
Vol 136 (1) ◽  
pp. 16-22
Author(s):  
Musa Fares Alzahrani ◽  
Mansoor Radwi ◽  
Heather A. Leitch

Castleman's disease (CD) is a rare lymphoproliferative disorder that is most commonly present in multicentric (MCD) form in association with HIV infection. Interleukin-6 (IL-6) and human herpesvirus-8 (HHV-8) play major roles in MCD pathogenesis. Important treatment options have recently become available, particularly with the introduction of IL-6 and IL-6 receptor inhibitors for the treatment of HIV-negative patients with MCD. Though advances in therapy may improve outcomes in some patients, the prognosis remains guarded, and a stratified approach to the management of MCD is needed.


1999 ◽  
Vol 73 (7) ◽  
pp. 6177-6181 ◽  
Author(s):  
Johnan A. R. Kaleeba ◽  
Eric P. Bergquam ◽  
Scott W. Wong

ABSTRACT The rhesus rhadinovirus strain 17577 (RRV strain 17577) genome is essentially colinear with human herpesvirus 8 (HHV8)/Kaposi’s sarcoma-associated herpesvirus (KSHV) and encodes several analogous open reading frames (ORFs), including the homologue of cellular interleukin-6 (IL-6). To determine if the RRV IL-6-like ORF (RvIL-6) is biologically functional, it was expressed either transiently in COS-1 cells or purified from bacteria as a glutathioneS-transferase (GST)-RvIL-6 fusion and analyzed by IL-6 bioassays. Utilizing the IL-6-dependent B9 cell line, we found that both forms of RvIL-6 supported cell proliferation in a dose-dependent manner. Moreover, antibodies specific to the IL-6 receptor (IL-6R) or the gp130 subunit were capable of blocking the stimulatory effects of RvIL-6. Reciprocal titrations of GST-RvIL-6 against human recombinant IL-6 produced a more-than-additive stimulatory effect, suggesting that RvIL-6 does not inhibit but may instead potentiate normal cellular IL-6 signaling to B cells. These results demonstrate that RRV encodes an accessory protein with IL-6-like activity.


2020 ◽  
Vol 17 (2) ◽  
pp. 107-116 ◽  
Author(s):  
Behzad Dehghani ◽  
Tayebeh Hashempour ◽  
Zahra Hasanshahi

Introduction:Human Herpesvirus 8 (HHV-8) causes classical, endemic (African), and Acquired Immunodeficiency Syndrome (AIDS)-related Kaposi’s Sarcoma (KS), Body Cavity-Based Primary Effusion Lymphomas (BCBL), HHV-8-associated peritoneal Primary Effusion Lymphoma (PEL), and Multicentric Castleman’s Disease (MCD). HHV8 genome encodes several structural and non-structural proteins, among which vIL6 is a functional homologue of Interleukin-6 (IL-6). It has been established that vIL6 plays a vital role in HHV8 infections; also, it has been suggested that its function was mediated through gp130, rather than the gp80 (IL-6 receptor [IL-6R]). This study aimed to investigate the physicochemical and structural properties as well as the immunological features, and finally the interaction between vIL6 and IL6 receptor (IL6R) by using several bioinformatics tools which could provide both valuable insight into vIL6 protein and advantageous data for further studies on HHV8 inhibitors and new vaccines.Material and Methods:vIL6, human IL6 (hIL6), and IL6R were obtained from NCBI GenBank and Uniport, which were aligned by The CLC Genomics Workbench. "Signal-BLAST" and “predisi" were employed to define signal peptide; also, “Expasy’sProtParam” was used to predict physicochemical properties as well as "DiANNA", and "SCRATCH" predicted the disulfide bonds. “NetPhosK”, “DISPHOS”, “NetPhos”, ”NetNGlyc”, and ”GlycoEP” were involved to determine post-modification sites. To define immunoinformatics analysis, “BcePred”, “ABCpred”, “Bepipred”, “AlgPred”, and "VaxiJen" were used. “SOPMA”, “I-TASSER”, “GalaxyRefine”, and “3D-Refine” predicted and refined the secondary and tertiary structures. TM-align server was used to align 3D structures. In addition, docking analysis was done by “Hex 5.0.”, and finally the results were illustrated by “Discovery Studio”.Results:A signal peptide (1-22) was defined in the vIL6 sequences and analysis has shown that vIL6 is an acidic protein which is significantly stable in all organisms. Three Disulfide bonds were predicted and immunoinformatics analysis showed 5 distinct B-cell epitopes. vIL6 is predicted as a non-allergen protein and the majority of its structure consists of Alpha helix. TM-align pointed the significant similarity between vIL6 and hIL6 in protein folding. The high energy value between vIL6 protein and IL6R was calculated and further analysis illustrated 5 conserved regions as well as 4 conserved amino acids which had a significant role in vIL6 and IL6R interaction.Discussion:An in silico study by numerous software determined the possible interaction between vIL6 and IL6R and the possible role of this interaction in HHV8 pathogenesis and the progress of infection. These have been overlooked by previous studies and will be beneficial to gain a more comprehensive understanding of vIL6 function during HHV8 lifecycle and infections. Structural analysis showed the significant similarity between vIL6 and hIL6 folding which can describe the similarity of the functions or interactions of both proteins. Furthermore, several conserved regions in the interaction site which interestingly were highly conserved among all vIL6 sequences can be used as new target for vIL6 inhibitors. Moreover, our results could predict immunological properties of vIL6 which suggested the ability of this protein in induction of the humoral immune response. Such a protein may be used for further studies on therapeutic vaccine fields.


Sign in / Sign up

Export Citation Format

Share Document