vitamin k epoxide reductase
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 17)

H-INDEX

30
(FIVE YEARS 1)

Author(s):  
Thomas Chetot ◽  
Etienne Benoit ◽  
Véronique Lambert ◽  
Virginie Lattard

Vitamin K epoxide reductase (VKOR) activity is catalyzed by the VKORC1 enzyme. It is the target of vitamin K antagonists (VKA). Numerous mutations of VKORC1 have been reported and have been suspected to confer resistance to VKA and/or affect its velocity. Nevertheless, the results between studies have been conflicting, the functional characterization of these mutations in a cell system being complex due to the interweaving of VKOR activity in the vitamin K cycle. In this study, a new cellular approach was implemented to globally evaluate the vitamin K cycle in the HEK293 cells. This global approach was based on the vitamin K quinone/vitamin K epoxide (K/KO) balance. In the presence of VKA or when the VKORC1/VKORC1L1 were knocked out, the K/KO balance decreased significantly due to an accumulation of vitamin KO. On the contrary, when VKORC1 was overexpressed, the balance remained unchanged, demonstrating a limitation of the VKOR activity. This limitation was shown to be due to an insufficient expression of the activation partner of VKORC1, as overexpressing the protein disulfide isomerase (PDI) overcomes the limitation. This study is the first to demonstrate a functional interaction between VKORC1 and the PDI enzyme.


2021 ◽  
Vol 8 ◽  
Author(s):  
Adem Aksoy ◽  
Muntadher Al Zaidi ◽  
Elena Repges ◽  
Marc Ulrich Becher ◽  
Cornelius Müller ◽  
...  

Background: Vitamin K antagonists (VKA) are known to promote adverse cardiovascular remodeling. Contrarily, vitamin K supplementation has been discussed to decelerate cardiovascular disease. The recently described VKOR-isoenzyme Vitamin K epoxide reductase complex subunit 1-like 1 (VKORC1L1) is involved in vitamin K maintenance and exerts antioxidant properties. In this study, we sought to investigate the role of VKORC1L1 in neointima formation and on vascular smooth muscle cell (VSMC) function.Methods and Results: Treatment of wild-type mice with Warfarin, a well-known VKA, increased maladaptive neointima formation after carotid artery injury. This was accompanied by reduced vascular mRNA expression of VKORC1L1. In vitro, Warfarin was found to reduce VKORC1L1 mRNA expression in VSMC. VKORC1L1-downregulation by siRNA promoted viability, migration and formation of reactive oxygen species. VKORC1L1 knockdown further increased expression of key markers of vascular inflammation (NFκB, IL-6). Additionally, downregulation of the endoplasmic reticulum (ER) membrane resident VKORC1L1 increased expression of the main ER Stress moderator, glucose-regulated protein 78 kDa (GRP78). Moreover, treatment with the ER Stress inducer tunicamycin promoted VKORC1L1, but not VKORC1 expression. Finally, we sought to investigate, if treatment with vitamin K can exert protective properties on VSMC. Thus, we examined effects of menaquinone-7 (MK7) on VSMC phenotype switch. MK7 treatment dose-dependently alleviated PDGF-induced proliferation and migration. In addition, we detected a reduction in expression of inflammatory and ER Stress markers.Conclusion: VKA treatment promotes neointima formation after carotid wire injury. In addition, VKA treatment reduces aortal VKORC1L1 mRNA expression. VKORC1L1 inhibition contributes to an adverse VSMC phenotype, while MK7 restores VSMC function. Thus, MK7 supplementation might be a feasible therapeutic option to modulate vitamin K- and VKORC1L1-mediated vasculoprotection.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M Al Zaidi ◽  
A Aksoy ◽  
E Repges ◽  
M U Becher ◽  
C Mueller ◽  
...  

Abstract Background Vitamin K antagonists (VKA) like Warfarin are known to promote adverse cardiovascular remodelling. Contrarily, vitamin K supplementation has been discussed to decelerate cardiovascular disease. The recently described VKOR-isoenzyme Vitamin K epoxide reductase complex subunit 1-like 1 (VKORC1L1) is involved in vitamin K maintenance and exerts antioxidant properties. In this study, we sought to investigate the role of VKORC1L1 in neointima formation and on vascular smooth muscle cell (VSMC) function. Methods and results Treatment of wild-type mice with Warfarin increased maladaptive neointima formation after carotid artery injury. This was accompanied by reduced vascular mRNA expression of VKORC1L1. In vitro, Warfarin was found to reduce VKORC1L1 mRNA expression in VSMC. VKORC1L1 downregulation by siRNA promoted viability, migration and formation of reactive oxygen species. VKORC1L1 knockdown further increased expression of key markers of vascular inflammation (NFκB, IL-6). Additionally, downregulation of the endoplasmic reticulum (ER) membrane resident VKORC1L1 increased expression of the main ER Stress moderator, glucose-regulated protein 78 kDa (GRP78). Moreover, treatment with the ER Stress inducer Tunicamycin promoted VKORC1L1, but not VKORC1 expression. Finally, we sought to investigate, if treatment with vitamin K can mediate the protective properties of VKORC1L1. Thus, we examined effects of menaquinone-7 (MK7) on VSMC phenotype switch. MK7 treatment dose-dependently alleviated PDGF-induced proliferation and migration. In addition, we detected a reduction in expression of inflammatory and ER Stress markers. Conclusion VKA-induced neointima formation is associated with reduced vascular VKORC1L1 expression. VKORC1L1 inhibition contributes to an adverse VSMC phenotype while MK7 restores VSMC function. Thus, MK7 supplementation might be a feasible therapeutic option to modulate vitamin K- and VKORC1L1-mediated vasculoprotection. FUNDunding Acknowledgement Type of funding sources: None.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Chen ◽  
Fuxing Hao ◽  
Meng Zhang ◽  
Jinzha Xiao ◽  
Weiya Zhao ◽  
...  

Sodium dehydroacetate (Na-DHA), a fungicide used in food, feed, cosmetics, and medicine, has been found to cause coagulation aberration accompanied by the inhibition of vitamin K epoxide reductase (VKOR) in the liver in rats. VKOR complex 1 (VKORC1) and VKORC1 like-1 (VKORC1L1) are two homologous VKOR proteins. Little information is available on the effect of Na-DHA on VKORC1L1 in the liver or VKORC1/VKORC1L1 in extrahepatic tissue and sex differences in Na-DHA metabolism. In the present study, after administration of 200 mg/kg Na-DHA by gavage, significant inhibition of VKORC1 or VKORC1L1 expression in tissues, as well as prolonged prothrombin time (PT) and activated partial thromboplastin time (APTT), were observed. The PT/APTT in the Na-DHA-exposed males were 1.27- to 1.48-fold/1.17- to 1.37-fold, while the corresponding values in the Na-DHA-exposed females were 1.36- to 2.02-fold/1.20- to 1.70-fold. Serum or tissue Na-DHA concentrations were significantly higher in females than in males. The pharmacokinetic parameters (t1/2, Cmax, AUC0∼24 h, and MRT0∼24 h) of Na-DHA in female rats were significantly higher than those in male rats. Furthermore, cytochrome P450 (CYP) activity was investigated using the cocktail probe method. The results revealed that Na-DHA exhibited an inductive effect on CYP1A2, 2D1/2, and 3A1/2 activities by changing the main pharmacokinetic parameters of probe drugs in male rats. However, no significant change in CYP2E1 activity was found. There were sex differences in the metabolism and coagulation in rats exposed to Na-DHA. The lower metabolism and higher blood Na-DHA concentration in females may be the reasons for higher coagulation sensitivity in female rats.


2021 ◽  
Vol 17 (3) ◽  
pp. e1008805
Author(s):  
David Holcomb ◽  
Aikaterini Alexaki ◽  
Nancy Hernandez ◽  
Ryan Hunt ◽  
Kyle Laurie ◽  
...  

Thrombosis is a recognized complication of Coronavirus disease of 2019 (COVID-19) illness and is often associated with poor prognosis. There is a well-recognized link between coagulation and inflammation, however, the extent of thrombotic events associated with COVID-19 warrants further investigation. Poly(A) Binding Protein Cytoplasmic 4 (PABPC4), Serine/Cysteine Proteinase Inhibitor Clade G Member 1 (SERPING1) and Vitamin K epOxide Reductase Complex subunit 1 (VKORC1), which are all proteins linked to coagulation, have been shown to interact with SARS proteins. We computationally examined the interaction of these with SARS-CoV-2 proteins and, in the case of VKORC1, we describe its binding to ORF7a in detail. We examined the occurrence of variants of each of these proteins across populations and interrogated their potential contribution to COVID-19 severity. Potential mechanisms, by which some of these variants may contribute to disease, are proposed. Some of these variants are prevalent in minority groups that are disproportionally affected by severe COVID-19. Therefore, we are proposing that further investigation around these variants may lead to better understanding of disease pathogenesis in minority groups and more informed therapeutic approaches.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3895
Author(s):  
Sara Castro-Barquero ◽  
Margarita Ribó-Coll ◽  
Camille Lassale ◽  
Anna Tresserra-Rimbau ◽  
Olga Castañer ◽  
...  

Our aim is to assess whether following a Mediterranean Diet (MedDiet) decreases the risk of initiating antithrombotic therapies and the cardiovascular risk associated with its use in older individuals at high cardiovascular risk. We evaluate whether participants of the PREvención con DIeta MEDiterránea (PREDIMED) study allocated to a MedDiet enriched in extra-virgin olive oil or nuts (versus a low-fat control intervention) disclose differences in the risk of initiation of: (1) vitamin K epoxide reductase inhibitors (acenocumarol/warfarin; n = 6772); (2) acetylsalicylic acid as antiplatelet agent (n = 5662); and (3) other antiplatelet drugs (cilostazol/clopidogrel/dipyridamole/ditazol/ticlopidine/triflusal; n = 6768). We also assess whether MedDiet modifies the association between the antithrombotic drug baseline use and incident cardiovascular events. The MedDiet intervention enriched with extra-virgin olive oil decreased the risk of initiating the use of vitamin K epoxide reductase inhibitors relative to control diet (HR: 0.68 [0.46–0.998]). Their use was also more strongly associated with an increased risk of cardiovascular disease in participants not allocated to MedDiet interventions (HRcontrol diet: 4.22 [1.92–9.30], HRMedDiets: 1.71 [0.83–3.52], p-interaction = 0.052). In conclusion, in an older population at high cardiovascular risk, following a MedDiet decreases the initiation of antithrombotic therapies and the risk of suffering major cardiovascular events among users of vitamin K epoxide reductase inhibitors.


Author(s):  
Xuejie Chen ◽  
Yizhou Liu ◽  
Natsuko Furukawa ◽  
Da‐Yun Jin ◽  
G. Paul Savage ◽  
...  

2020 ◽  
Vol 9 ◽  
pp. 100095 ◽  
Author(s):  
Kazuki Takeda ◽  
Ayuko Morita ◽  
Yoshinori Ikenaka ◽  
Shouta M.M. Nakayama ◽  
Mayumi Ishizuka

Sign in / Sign up

Export Citation Format

Share Document