gp130 receptor
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 8)

H-INDEX

22
(FIVE YEARS 0)

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 429
Author(s):  
Sarah Q. To ◽  
Rhynelle S. Dmello ◽  
Anna K. Richards ◽  
Matthias Ernst ◽  
Ashwini L. Chand

Interleukin (IL)-6 family cytokines, such as IL-6 and IL-11, are defined by the shared use of the gp130 receptor for the downstream activation of STAT3 signaling and the activation of genes which contribute to the “hallmarks of cancer”, including proliferation, survival, invasion and metastasis. Increased expression of these cytokines, or the ligand-specific receptors IL-6R and IL-11RA, in breast tumors positively correlate to disease progression and poorer patient outcome. In this review, we examine evidence from pre-clinical studies that correlate enhanced IL-6 and IL-11 mediated gp130/STAT3 signaling to the progression of breast cancer. Key processes by which the IL-6 family cytokines contribute to the heterogeneous nature of breast cancer, immune evasion and metastatic potential, are discussed. We examine the latest research into the therapeutic targeting of IL-6 family cytokines that inhibit STAT3 transcriptional activity as a potential breast cancer treatment, including current clinical trials. The importance of the IL-6 family of cytokines in cellular processes that promote the development and progression of breast cancer warrants further understanding of the molecular basis for its actions to help guide the development of future therapeutic targets.


2022 ◽  
Author(s):  
Ruzanna Shkhyan ◽  
Candace Flynn ◽  
Emma Lamoure ◽  
Ben Van Handel ◽  
Arijita Sarkar ◽  
...  

Adult mammals are incapable of multi-tissue regeneration and augmentation of this potential may drastically shift current therapeutic paradigms. Here, we found that a common co-receptor of IL-6 cytokines, glycoprotein 130 (gp130), serves as a major nexus integrating various context-specific signaling inputs to either promote regenerative outcomes or aggravate disease progression. Via genetic and pharmacological experiments in vitro and in vivo, we demonstrated that a signaling tyrosine 814 (Y814) within gp130 serves as a major cellular stress sensor. Mice with constitutively inactivated Y814 (F814) exhibit regenerative, not reparative, responses after wounding in skin and anti-degenerative responses in the synovial joint. In addition, pharmacological inhibition of gp130 Y814 results in regeneration of multiple tissues in several species as well as disease modification in animal models of osteoarthritis. Our study characterizes a novel molecular mechanism that, if selectively manipulated, enhances the intrinsic regenerative capacity while preventing pathological outcomes in injury and disease.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 609
Author(s):  
Yuko Shimamura ◽  
Rina Noaki ◽  
Ami Kurokawa ◽  
Mio Utsumi ◽  
Chikako Hirai ◽  
...  

Staphylococcal enterotoxin A (SEA), which is a superantigen toxin protein, binds to cytokine receptor gp130. Gp130 activates intracellular signaling pathways, including the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. The effects of SEA on the JAK/STAT signaling pathway in mouse spleen cells were examined. After treatment with SEA, mRNA expression levels of interferon gamma (IFN-γ) and suppressor of cytokine-signaling 1 (SOCS1) increased. SEA-induced IFN-γ and SOCS1 expression were decreased by treatment with (−)-epigallocatechin gallate (EGCG). The phosphorylated STAT3, Tyr705, increased significantly in a SEA concentration-dependent manner in mouse spleen cells. Although (−)-3″-Me-EGCG did not inhibit SEA-induced phosphorylated STAT3, EGCG and (−)-4″-Me-EGCG significantly inhibited SEA-induced phosphorylated STAT3. It was thought that the hydroxyl group at position 3 of the galloyl group in the EGCG was responsible for binding to SEA and suppressing SEA-induced phosphorylation of STAT3. Through protein thermal shift assay in vitro, the binding of the gp130 receptor to SEA and the phosphorylation of STAT3 were inhibited by the interaction between EGCG and SEA. As far as we know, this is the first report to document that EGCG inhibits the binding of the gp130 receptor to SEA and the associated phosphorylation of STAT3.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 187
Author(s):  
Lokman Pang ◽  
Jennifer Huynh ◽  
Mariah G. Alorro ◽  
Xia Li ◽  
Matthias Ernst ◽  
...  

The intestinal epithelium provides a barrier against commensal and pathogenic microorganisms. Barrier dysfunction promotes chronic inflammation, which can drive the pathogenesis of inflammatory bowel disease (IBD) and colorectal cancer (CRC). Although the Signal Transducer and Activator of Transcription-3 (STAT3) is overexpressed in both intestinal epithelial cells and immune cells in IBD patients, the role of the interleukin (IL)-6 family of cytokines through the shared IL-6ST/gp130 receptor and its associated STAT3 signalling in intestinal barrier integrity is unclear. We therefore investigated the role of STAT3 in retaining epithelial barrier integrity using dextran sulfate sodium (DSS)-induced colitis in two genetically modified mouse models, to either reduce STAT1/3 activation in response to IL-6 family cytokines with a truncated gp130∆STAT allele (GP130∆STAT/+), or by inducing short hairpin-mediated knockdown of Stat3 (shStat3). Here, we show that mice with reduced STAT3 activity are highly susceptible to DSS-induced colitis. Mechanistically, the IL-6/gp130/STAT3 signalling cascade orchestrates intestinal barrier function by modulating cytokine secretion and promoting epithelial integrity to maintain a defence against bacteria. Our study also identifies a crucial role of STAT3 in controlling intestinal permeability through tight junction proteins. Thus, therapeutically targeting the IL-6/gp130/STAT3 signalling axis to promote barrier function may serve as a treatment strategy for IBD patients.


Author(s):  
Hiroyuki Kawagishi ◽  
Tsutomu Nakada ◽  
Takuro Numaga-Tomita ◽  
Mitsuhiko Yamada

2019 ◽  
Vol 27 ◽  
pp. S381-S382
Author(s):  
N.Q. Liu ◽  
B. Van Handel ◽  
R. Shkhyan ◽  
S. Limfat ◽  
S. Lee ◽  
...  

2018 ◽  
Vol 315 (1) ◽  
pp. C91-C103 ◽  
Author(s):  
Justin P. Hardee ◽  
Dennis K. Fix ◽  
Xuewen Wang ◽  
Edie C. Goldsmith ◽  
Ho-Jin Koh ◽  
...  

Systemic cytokines and contractile activity are established regulators of muscle protein turnover. Paradoxically, the IL-6 cytokine family, which shares the ubiquitously expressed membrane gp130 receptor, has been implicated in skeletal muscle’s response to both contractions and cancer-induced wasting. Although we have reported that tumor-derived cachectic factors could suppress stretch-induced protein synthesis in cultured myotubes, the ability of systemic cytokines to disrupt in vivo eccentric contraction-induced protein synthesis has not been established. Therefore, we examined whether systemic IL-6 regulates basal and eccentric contraction-induced protein synthesis through muscle gp130 signaling. Systemic IL-6 overexpression was performed for 2 wk, and we then examined basal and eccentric contraction-induced protein synthesis and mammalian target of rapamycin complex 1 (mTORC1) signaling in tibialis anterior muscle of male wild-type, muscle-specific gp130 receptor knockout, and tumor-bearing ApcMin/+ mice. Systemic IL-6 overexpression suppressed basal protein synthesis and mTORC1 signaling independently of IL-6 level, which was rescued by muscle gp130 loss. Interestingly, only high systemic IL-6 levels suppressed eccentric contraction-induced protein synthesis. Systemic IL-6 overexpression in precachectic tumor-bearing ApcMin/+ mice accelerated cachexia development, which coincided with suppressed basal and eccentric contraction-induced muscle protein synthesis. The suppression of eccentric contraction-induced protein synthesis by IL-6 occurred independently of mTORC1 activation. Collectively, these findings demonstrate that basal protein synthesis suppression was more sensitive to circulating IL-6 compared with the induction of protein synthesis by eccentric contraction. However, systemic IL-6 can interact with the cancer environment to suppress eccentric contraction-induced protein synthesis independently of mTORC1 activation.


2018 ◽  
Vol 47 (1) ◽  
pp. 140-150 ◽  
Author(s):  
Shuang Liu ◽  
Li-Xin Liu ◽  
Yun-Long Zhang ◽  
Song Lai ◽  
Yun-Peng Xie ◽  
...  

Background/Aims: Cardiac remodeling is a critical pathogenetic process leading to heart failure. Suppressor of cytokine signaling-3 (SOCS3) is demonstrated as a key negative regulator of the gp130 receptor to inhibit cardiac hypertrophy. However, the role of SOCS3 in deoxycorticosterone-acetate (DOCA)-salt-induced cardiac remodeling remains unclear. Methods: Cardiac-specific SOCS3 knockout (SOCS3cKO) and wild-type (WT) C57BL/6J mice were subjected to uninephrectomy and DOCA-salt for 3 weeks. The effect of SOCS3 on cardiac remodeling and inflammation was evaluated by histological analysis. Gene and protein levels were measured by real-time PCR and immunoblotting analysis. Results: After DOCA-salt treatment, the expression of SOCS3, activation of gp130/JAK/STAT3, cardiac dysfunction and fibrosis in DOCA-salt mice were significantly elevated, which were markedly attenuated by eplerenone, a specific mineralocorticoid receptor (MR) blocker. Moreover, DOCA-salt-induced cardiac dysfunction, hypertrophy, fibrosis and inflammation were aggravated in SOCS3cKO mice, but were significantly reduced in AAV9-SOCS3-injected mice. These effects were mostly associated with activation of gp130/STAT3/AKT/ERK1/2, TGF-β/Smad2/3 and NF-κB signaling pathways. Conclusions: Our data demonstrate that loss of SOCS3 in cardiomyocytes promotes DOCA-salt-induced cardiac remodeling and inflammation, and it may be a novel potential therapeutic target for hypertensive heart disease.


Sign in / Sign up

Export Citation Format

Share Document