scholarly journals Analysis of adenovirus type 2 L1 RNA 3'-end formation in vivo and in vitro.

1988 ◽  
Vol 62 (4) ◽  
pp. 1464-1468 ◽  
Author(s):  
K H Hales ◽  
J M Birk ◽  
M J Imperiale
1981 ◽  
Vol 1 (7) ◽  
pp. 635-651
Author(s):  
D C Lee ◽  
R G Roeder

We examined the transcription of a variety of adenovirus type 2 genes in a cell-free system containing purified ribonucleic acid polymerase II and a crude extract from cultured human cells. The early EIA, EIB, EIII, and EIV genes and the intermediate polypeptide IX gene, all of which contain a recognizable TATAA sequence upstream from the cap site, were actively transcribed in vitro, albeit with apparently different efficiencies, whereas the early EII (map position 74.9) and IVa2 genes, both of which lack a TATAA sequence, were not actively transcribed. A reverse transcriptase-primer extension analysis showed that the 5' ends of the in vitro transcripts were identical to those of the corresponding in vivo ribonucleic acids and that, in those instances where initiation was heterogeneous in vivo, a similar kind of heterogeneity was observed in the cell-free system. Transcription of the polypeptide IX gene indicated that this transcript was not terminated at, or processed to, the polyadenylic acid addition site in vitro. We also failed to observe, using the in vitro system, any indication of transcriptional regulation based on the use of adenovirus type 2-infected cell extracts.


1981 ◽  
Vol 1 (7) ◽  
pp. 635-651 ◽  
Author(s):  
D C Lee ◽  
R G Roeder

We examined the transcription of a variety of adenovirus type 2 genes in a cell-free system containing purified ribonucleic acid polymerase II and a crude extract from cultured human cells. The early EIA, EIB, EIII, and EIV genes and the intermediate polypeptide IX gene, all of which contain a recognizable TATAA sequence upstream from the cap site, were actively transcribed in vitro, albeit with apparently different efficiencies, whereas the early EII (map position 74.9) and IVa2 genes, both of which lack a TATAA sequence, were not actively transcribed. A reverse transcriptase-primer extension analysis showed that the 5' ends of the in vitro transcripts were identical to those of the corresponding in vivo ribonucleic acids and that, in those instances where initiation was heterogeneous in vivo, a similar kind of heterogeneity was observed in the cell-free system. Transcription of the polypeptide IX gene indicated that this transcript was not terminated at, or processed to, the polyadenylic acid addition site in vitro. We also failed to observe, using the in vitro system, any indication of transcriptional regulation based on the use of adenovirus type 2-infected cell extracts.


Virology ◽  
1981 ◽  
Vol 112 (2) ◽  
pp. 703-713 ◽  
Author(s):  
J.E. Smart ◽  
J.B. Lewis ◽  
M.B. Mathews ◽  
M.L. Harter ◽  
C.W. Anderson

Author(s):  
Abdul Mohin Sajib ◽  
Payal Agarwal ◽  
Daniel J. Patton ◽  
Rebecca L. Nance ◽  
Natalie A. Stahr ◽  
...  

1991 ◽  
Vol 11 (3) ◽  
pp. 1508-1522
Author(s):  
S C Linn ◽  
D S Luse

We have purified specific RNA polymerase II elongation intermediates initiated at the adenovirus type 2 major late promoter and paused either 15 or 35 to 36 bases downstream of the transcription initiation site. Transcription was arrested at these two sites by combining modification of the promoter sequence with limitation of appropriate nucleotide concentrations in the in vitro reaction. The resultant complexes were remarkably stable and could be purified away from free DNA and contaminating protein-DNA complexes, without loss of activity, by the use of sucrose gradient sedimentation and low-ionic-strength polyacrylamide gel electrophoresis. The complexes were characterized by both DNase I and o-phenanthroline-copper ion nuclease protection assays. The DNase I footprints revealed that the structures of the 15- and 35- to 36-nucleotide transcription complexes differed from those previously reported for an adenovirus type 2 major late preinitiation complex and a subsequent intermediate formed upon addition of ATP. Furthermore, the 35- to 36-nucleotide complex protected a significantly smaller portion of the template than the 15-nucleotide species and migrated at a slightly higher rate in polyacrylamide gels. These observations suggest that changes in structural organization may continue to occur in transcription complexes which are already committed to elongation.


Sign in / Sign up

Export Citation Format

Share Document