scholarly journals Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion.

1988 ◽  
Vol 62 (8) ◽  
pp. 2596-2604 ◽  
Author(s):  
W H Cai ◽  
B Gu ◽  
S Person
2008 ◽  
Vol 53 (3) ◽  
pp. 987-996 ◽  
Author(s):  
Radeekorn Akkarawongsa ◽  
Nina E. Pocaro ◽  
Gary Case ◽  
Aaron W. Kolb ◽  
Curtis R. Brandt

ABSTRACT The 773-residue ectodomain of the herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) has been resistant to the use of mutagenic strategies because the majority of the induced mutations result in defective proteins. As an alternative strategy for the identification of functionally important regions and novel inhibitors of infection, we prepared a library of overlapping peptides homologous to the ectodomain of gB and screened for the ability of the peptides to block infection. Seven of 138 15-mer peptides inhibited infection by more than 50% at a concentration of 100 μM. Three peptides (gB94, gB122, and gB131) with 50% effective concentrations (EC50s) below 20 μM were selected for further studies. The gB131 peptide (residues 681 to 695 in HSV-1 gB [gB-1]) was a specific entry inhibitor (EC50, ∼12 μM). The gB122 peptide (residues 636 to 650 in gB-1) blocked viral entry (EC50, ∼18 μM), protected cells from infection (EC50, ∼72 μM), and inactivated virions in solution (EC50, ∼138 μM). We were unable to discern the step or steps inhibited by the gB94 peptide, which is homologous to residues 496 to 510 in gB-1. Substitution of a tyrosine in the gB122 peptide (Y640 in full-length gB-1) reduced the antiviral activity eightfold, suggesting that this residue is critical for inhibition. This peptide-based strategy could lead to the identification of functionally important regions of gB or other membrane proteins and identify novel inhibitors of HSV-1 entry.


2001 ◽  
Vol 120 (5) ◽  
pp. A136-A137
Author(s):  
K TSAMAKIDES ◽  
E PANOTOPOULOU ◽  
D DIMITROULOPOULOS ◽  
M CHRISTOPOULO ◽  
D XINOPOULOS ◽  
...  

1994 ◽  
Vol 75 (11) ◽  
pp. 3127-3135 ◽  
Author(s):  
H. S. Marsden ◽  
M. Murphy ◽  
G. L. McVey ◽  
K. A. MacEachran ◽  
A. M. Owsianka ◽  
...  

2006 ◽  
Vol 87 (12) ◽  
pp. 3483-3494 ◽  
Author(s):  
Sven Hoppe ◽  
Mario Schelhaas ◽  
Verena Jaeger ◽  
Timo Liebig ◽  
Philipp Petermann ◽  
...  

The aim of this study was to understand how molecular determinants of epithelial cells influence initial infection by herpes simplex virus type 1 (HSV-1). Upon infection of the epithelial MDCKII cell line, enhanced association of virus particles with cells forming actin protrusions was observed, suggesting a putative role of actin dynamics in HSV-1 infection. Thus, the impact of the small Rho-like GTPases Rac1, Cdc42 and RhoA acting as key regulators of actin dynamics was addressed. Endogenous Rac1 and Cdc42 were temporarily activated at 15 and 30 min after HSV-1 infection. When constitutively active Cdc42 or Rac1 mutants were expressed transiently, a significant decrease in infectivity was observed, whereas expression of RhoA mutants had no influence. Furthermore, dominant-negative Cdc42 led to decreased infectivity, whereas dominant-negative Rac1 had no effect. So far, the study of potential effectors indicated that Rac1/Cdc42 mutants inhibited infectivity independently of p21-activated kinase (Pak1). The inhibitory effect of Rac1/Cdc42 mutant expression on HSV-1 infection was characterized further and it was found that binding, internalization and transport of HSV-1 were not affected by expression of Rac1/Cdc42 mutants. Thus, these results provide the first evidence for a role of Rac1/Cdc42 signalling during early HSV-1 infection and suggest a mechanism relying on virus-induced regulation of Rac1/Cdc42 activities.


Eye ◽  
1994 ◽  
Vol 8 (3) ◽  
pp. 298-306 ◽  
Author(s):  
Richard R Tamesis ◽  
Elisabeth M Messmer ◽  
Beverly A Rice ◽  
James E Dutt ◽  
C Stephen Foster

Sign in / Sign up

Export Citation Format

Share Document