Role of herpes simplex virus type 1 (HSV-1) in the pathogenesis of peptic ulcer disease

2001 ◽  
Vol 120 (5) ◽  
pp. A136-A137
Author(s):  
K TSAMAKIDES ◽  
E PANOTOPOULOU ◽  
D DIMITROULOPOULOS ◽  
M CHRISTOPOULO ◽  
D XINOPOULOS ◽  
...  
2001 ◽  
Vol 120 (5) ◽  
pp. A136-A137
Author(s):  
Klisthenis X. Tsamakides ◽  
Evi Panotopoulou ◽  
Dimitrios A. Dimitroulopoulos ◽  
Maria Christopoulo ◽  
Dimitrios Xinopoulos ◽  
...  

1994 ◽  
Vol 75 (11) ◽  
pp. 3127-3135 ◽  
Author(s):  
H. S. Marsden ◽  
M. Murphy ◽  
G. L. McVey ◽  
K. A. MacEachran ◽  
A. M. Owsianka ◽  
...  

2006 ◽  
Vol 87 (12) ◽  
pp. 3483-3494 ◽  
Author(s):  
Sven Hoppe ◽  
Mario Schelhaas ◽  
Verena Jaeger ◽  
Timo Liebig ◽  
Philipp Petermann ◽  
...  

The aim of this study was to understand how molecular determinants of epithelial cells influence initial infection by herpes simplex virus type 1 (HSV-1). Upon infection of the epithelial MDCKII cell line, enhanced association of virus particles with cells forming actin protrusions was observed, suggesting a putative role of actin dynamics in HSV-1 infection. Thus, the impact of the small Rho-like GTPases Rac1, Cdc42 and RhoA acting as key regulators of actin dynamics was addressed. Endogenous Rac1 and Cdc42 were temporarily activated at 15 and 30 min after HSV-1 infection. When constitutively active Cdc42 or Rac1 mutants were expressed transiently, a significant decrease in infectivity was observed, whereas expression of RhoA mutants had no influence. Furthermore, dominant-negative Cdc42 led to decreased infectivity, whereas dominant-negative Rac1 had no effect. So far, the study of potential effectors indicated that Rac1/Cdc42 mutants inhibited infectivity independently of p21-activated kinase (Pak1). The inhibitory effect of Rac1/Cdc42 mutant expression on HSV-1 infection was characterized further and it was found that binding, internalization and transport of HSV-1 were not affected by expression of Rac1/Cdc42 mutants. Thus, these results provide the first evidence for a role of Rac1/Cdc42 signalling during early HSV-1 infection and suggest a mechanism relying on virus-induced regulation of Rac1/Cdc42 activities.


Eye ◽  
1994 ◽  
Vol 8 (3) ◽  
pp. 298-306 ◽  
Author(s):  
Richard R Tamesis ◽  
Elisabeth M Messmer ◽  
Beverly A Rice ◽  
James E Dutt ◽  
C Stephen Foster

2006 ◽  
Vol 80 (8) ◽  
pp. 3985-3993 ◽  
Author(s):  
Sadik H. Kassim ◽  
Naveen K. Rajasagi ◽  
Xiangyi Zhao ◽  
Robert Chervenak ◽  
Stephen R. Jennings

ABSTRACT The precise role of each of the seven individual CD11c+ dendritic cell subsets (DCs) identified to date in the response to viral infections is not known. DCs serve as critical links between the innate and adaptive immune responses against many pathogens, including herpes simplex virus type 1 (HSV-1). The role of DCs as mediators of resistance to HSV-1 infection was investigated using CD11c-diphtheria toxin (DT) receptor-green fluorescent protein transgenic mice, in which DCs can be transiently depleted in vivo by treatment with low doses of DT. We show that ablation of DCs led to enhanced susceptibility to HSV-1 infection in the highly resistant C57BL/6 mouse strain. Specifically, we showed that the depletion of DCs led to increased viral spread into the nervous system, resulting in an increased rate of morbidity and mortality. Furthermore, we showed that ablation of DCs impaired the optimal activation of NK cells and CD4+ and CD8+ T cells in response to HSV-1. These data demonstrated that DCs were essential not only in the optimal activation of the acquired T-cell response to HSV-1 but also that DCs were crucial for innate resistance to HSV-1 infection.


Sign in / Sign up

Export Citation Format

Share Document