scholarly journals The adenovirus type 5 i-leader open reading frame functions in cis to reduce the half-life of L1 mRNAs.

1990 ◽  
Vol 64 (2) ◽  
pp. 551-558 ◽  
Author(s):  
P D Soloway ◽  
T Shenk
1999 ◽  
Vol 73 (2) ◽  
pp. 1245-1253 ◽  
Author(s):  
Dominique Boivin ◽  
Megan R. Morrison ◽  
Richard C. Marcellus ◽  
Emmanuelle Querido ◽  
Philip E. Branton

ABSTRACT The 34-kDa early-region 4 open reading frame 6 (E4orf6) product of human adenovirus type 5 forms complexes with both the cellular tumor suppressor p53 and the viral E1B 55-kDa protein (E1B-55kDa). E4orf6 can inhibit p53 transactivation activity, as can E1B-55kDa, and in combination these viral proteins cause the rapid turnover of p53. In addition, E4orf6-55kDa complexes play a critical role at later times in the regulation of viral mRNA transport and shutoff of host cell protein synthesis. In the present study, we have further characterized some of the biological properties of E4orf6. Analysis of extracts from infected cells by Western blotting indicated that E4orf6, like E1A and E1B products, is present at high levels until very late times, suggesting that it is available to act throughout the infectious cycle. This pattern is similar to that of E4orf4 but differs markedly from that of another E4 product, E4orf6/7, which is present only transiently. Synthesis of E4orf6 is maximal at early stages but ceases completely with the onset of shutoff of host protein synthesis; however, it was found that unlike E4orf6/7, E4orf6 is very stable, thus allowing high levels to be maintained even at late times. E4orf6 was shown to be phosphorylated at low levels. Coimmunoprecipitation studies in cells lacking p53 indicated that E4orf6 interacts with a number of other proteins. Five of these were shown to be viral or virally induced proteins ranging in size from 102 to 27 kDa, including E1B-55kDa. One such species, of 72 kDa, was shown not to represent the E2 DNA-binding protein and thus remains to be identified. Another appeared to be the L4 100-kDa nonstructural adenovirus late product, but it appeared to be present nonspecifically and not as part of an E4orf6 complex. Apart from p53, three additional cellular proteins, of 84, 19, and 14 kDa were detected by using an adenovirus vector that expresses only E4orf6. The 19-kDa species and a 16-kDa cellular protein were also shown to interact with E4orf6/7. It is possible that complex formation with these viral and cellular proteins plays a role in one or more of the biological activities associated with E4orf6 and E4orf6/7.


2012 ◽  
Vol 86 (15) ◽  
pp. 8296-8308 ◽  
Author(s):  
D. Muller ◽  
S. Schreiner ◽  
M. Schmid ◽  
P. Groitl ◽  
M. Winkler ◽  
...  

1998 ◽  
Vol 72 (4) ◽  
pp. 2975-2982 ◽  
Author(s):  
Ronit Shtrichman ◽  
Tamar Kleinberger

ABSTRACT Adenovirus type 5 E4 open reading frame 4 (E4orf4) protein has been previously shown to counteract transactivation of the junBand c-fos genes by cyclic AMP plus E1A protein and to interact with protein phosphatase 2A (PP2A). Here, we show that the wild-type E4orf4 protein induces apoptosis in the E1A-expressing 293 cells, in NIH 3T3 cells transformed with v-Ras, and in the lung carcinoma cell line H1299. The induction of apoptosis is not accompanied by enhanced levels of p53 in 293 cells and occurs in the absence of p53 in H1299 cells, indicating involvement of a p53-independent pathway. A mutant E4orf4 protein that had lost the ability to induce apoptosis also lost its ability to bind PP2A. We suggest that E4orf4 antagonizes continuous signals to proliferate, like those given by E1A or v-Ras, and that the conflicting signals lead to the induction of cell death.


2011 ◽  
Vol 8 (1) ◽  
pp. 162 ◽  
Author(s):  
Sanne K van den Hengel ◽  
Jeroen de Vrij ◽  
Taco G Uil ◽  
Martine L Lamfers ◽  
Peter AE Sillevis Smitt ◽  
...  

1999 ◽  
Vol 73 (6) ◽  
pp. 4600-4610 ◽  
Author(s):  
Joseph S. Orlando ◽  
David A. Ornelles

ABSTRACT A region in the carboxy terminus of the protein encoded by open reading frame 6 in early region 4 (E4orf6) of adenovirus type 5 was determined to be required for directing nuclear localization of the E1B 55-kDa protein and for efficient virus replication. A peptide encompassing this region, corresponding to amino acids 239 through 255 of the E4orf6 protein, was analyzed by circular dichroism spectroscopy. The peptide showed evidence of self-interaction and displayed the characteristic spectra of an amphipathic α helix in the helix-stabilizing solvent trifluoroethanol. Disrupting the integrity of this α helix in the E4orf6 protein by proline substitutions or by removing amino acids 241 through 250 abolished its ability to direct the E1B 55-kDa protein to the nucleus when both proteins were transiently expressed in HeLa cells. Expression of E4orf6 variants that failed to direct nuclear localization of the E1B 55-kDa protein failed to enhance replication of the E4 mutant virus, dl1014, whereas expression of the wild-type E4orf6 protein restored growth of dl1014 to near-wild-type levels. These results suggest that the E4orf6 protein contains an arginine-faced, amphipathic α helix that is critical for a functional interaction with the E1B 55-kDa protein in the cell and for the function of the E4orf6 protein during a lytic infection.


2009 ◽  
Vol 83 (18) ◽  
pp. 9045-9056 ◽  
Author(s):  
Kathrin Kindsmüller ◽  
Sabrina Schreiner ◽  
Florian Leinenkugel ◽  
Peter Groitl ◽  
Elisabeth Kremmer ◽  
...  

ABSTRACT The adenovirus type 5 (Ad5) early region 1B 55-kDa (E1B-55K) protein is a multifunctional regulator of cell-cycle-independent virus replication that participates in many processes required for maximal virus production. As part of a study of E1B-55K function, we generated the Ad5 mutant H5pm4133, carrying stop codons after the second and seventh codons of the E1B reading frame, thereby eliminating synthesis of the full-length 55K product and its smaller derivatives. Unexpectedly, phenotypic studies revealed that H5pm4133 fully exhibits the characteristics of wild-type (wt) Ad5 in all assays tested. Immunoblot analyses demonstrated that H5pm4133 and wt Ad5 produce very low levels of two distinct polypeptides in the 48- to 49-kDa range, which lack the amino-terminal region but contain segments from the central and carboxy-terminal part of the 55K protein. Genetic and biochemical studies with different Ad5 mutants show that at least one of these isoforms consists of two closely migrating polypeptides of 433 amino acid residues (433R) and 422R, which are produced by translation initiation at two downstream AUG codons of the 55K reading frame. Significantly, a virus mutant producing low levels of the 433R isoform alone replicated to levels comparable to those of wt Ad5, demonstrating that this polypeptide provides essentially all functions of E1B-55K required to promote maximal virus growth in human tumor cells. Altogether, these results extend previous findings that the wt Ad5 E1B region encodes a series of smaller isoforms of E1B-55K and demonstrate that very low levels of at least one of these novel proteins (E1B-433R) are sufficient for a productive infection.


2007 ◽  
Vol 44 (14) ◽  
pp. 3588-3596 ◽  
Author(s):  
Martine Ossevoort ◽  
Arnaud Zaldumbide ◽  
Aartjan J.W. te Velthuis ◽  
Mark Melchers ◽  
Maaike E. Ressing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document