amphipathic alpha helix
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 4)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 95 (8) ◽  
Author(s):  
Sisi Yang ◽  
Zhongliang Shen ◽  
Yaoyue Kang ◽  
Liren Sun ◽  
Usha Viswanathan ◽  
...  

ABSTRACT Hepatitis B virus (HBV) small (S) envelope protein has the intrinsic ability to direct the formation of small spherical subviral particles (SVPs) in eukaryotic cells. However, the molecular mechanism underlying the morphogenesis of SVPs from the monomeric S protein initially synthesized at the endoplasmic reticulum (ER) membrane remains largely elusive. Structure prediction and extensive mutagenesis analysis suggested that the amino acid residues spanning W156 to R169 of S protein form an amphipathic alpha helix and play essential roles in SVP production and S protein metabolic stability. Further biochemical analyses showed that the putative amphipathic alpha helix was not required for the disulfide-linked S protein oligomerization but was essential for SVP morphogenesis. Pharmacological disruption of vesicle trafficking between the ER and Golgi complex in SVP-producing cells supported the hypothesis that S protein-directed SVP morphogenesis takes place at the ER-Golgi intermediate compartment (ERGIC). Moreover, it was demonstrated that S protein is degraded in hepatocytes via a 20S proteasome-dependent but ubiquitination-independent nonclassic ER-associated degradation pathway. Taken together, the results reported here favor a model in which the amphipathic alpha helix at the antigenic loop of S protein attaches to the lumen leaflet to facilitate SVP budding from the ERGIC, whereas the failure of the budding process may result in S protein degradation by 20S proteasome in a ubiquitination-independent manner. IMPORTANCE SVPs are the predominant viral product produced by HBV-infected hepatocytes. Their levels exceed those of virion particles by 10,000- to 100,000-fold in the blood of HBV-infected individuals. The high levels of SVPs, or HBV surface antigen (HBsAg), in the circulation induce immune tolerance and contribute to the establishment of persistent HBV infection. The loss of HBsAg, often accompanied by the appearance of anti-HBsAg antibodies, is the hallmark of durable immune control of HBV infection. Therapeutic induction of HBsAg loss is thus considered to be essential for the restoration of the host antiviral immune response and functional cure of chronic hepatitis B. Our findings on the mechanism of SVP morphogenesis and S protein metabolism will facilitate the rational discovery and development of antiviral drugs to achieve this therapeutic goal.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1466
Author(s):  
Jobin Varkey ◽  
Jiantao Zhang ◽  
Junghyun Kim ◽  
Gincy George ◽  
Guijuan He ◽  
...  

Positive-strand RNA viruses universally remodel host intracellular membranes to form membrane-bound viral replication complexes, where viral offspring RNAs are synthesized. In the majority of cases, viral replication proteins are targeted to and play critical roles in the modulation of the designated organelle membranes. Many viral replication proteins do not have transmembrane domains, but contain single or multiple amphipathic alpha-helices. It has been conventionally recognized that these helices serve as an anchor for viral replication protein to be associated with membranes. We report here that a peptide representing the amphipathic α-helix at the N-terminus of the poliovirus 2C protein not only binds to liposomes, but also remodels spherical liposomes into tubules. The membrane remodeling ability of this amphipathic alpha-helix is similar to that recognized in other amphipathic alpha-helices from cellular proteins involved in membrane remodeling, such as BAR domain proteins. Mutations affecting the hydrophobic face of the amphipathic alpha-helix severely compromised membrane remodeling of vesicles with physiologically relevant phospholipid composition. These mutations also affected the ability of poliovirus to form plaques indicative of reduced viral replication, further underscoring the importance of membrane remodeling by the amphipathic alpha-helix in possible relation to the formation of viral replication complexes.


2020 ◽  
Vol 59 (38) ◽  
pp. 16777-16785 ◽  
Author(s):  
Vincent Wiebach ◽  
Andi Mainz ◽  
Romina Schnegotzki ◽  
Mary‐Ann J. Siegert ◽  
Manuela Hügelland ◽  
...  

2006 ◽  
Vol 81 (6) ◽  
pp. 2745-2757 ◽  
Author(s):  
Volker Brass ◽  
Zsuzsanna Pal ◽  
Nicolas Sapay ◽  
Gilbert Deléage ◽  
Hubert E. Blum ◽  
...  

ABSTRACT Nonstructural protein 5A (NS5A) is a membrane-associated essential component of the hepatitis C virus (HCV) replication complex. An N-terminal amphipathic alpha helix mediates in-plane membrane association of HCV NS5A and at the same time is likely involved in specific protein-protein interactions required for the assembly of a functional replication complex. The aim of this study was to identify the determinants for membrane association of NS5A from the related GB viruses and pestiviruses. Although primary amino acid sequences differed considerably, putative membrane anchor domains with amphipathic features were predicted in the N-terminal domains of NS5A proteins from these viruses. Confocal laser scanning microscopy, as well as membrane flotation analyses, demonstrated that NS5As from GB virus B (GBV-B), GBV-C, and bovine viral diarrhea virus, the prototype pestivirus, display membrane association characteristics very similar to those of HCV NS5A. The N-terminal 27 to 33 amino acid residues of these NS5A proteins were sufficient for membrane association. Circular dichroism analyses confirmed the capacity of these segments to fold into alpha helices upon association with lipid-like molecules. Despite structural conservation, only very limited exchanges with sequences from related viruses were tolerated in the context of functional HCV RNA replication, suggesting virus-specific interactions of these segments. In conclusion, membrane association of NS5A by an N-terminal amphipathic alpha helix is a feature shared by HCV and related members of the family Flaviviridae. This observation points to conserved roles of the N-terminal amphipathic alpha helices of NS5A in replication complex formation.


FEBS Journal ◽  
2006 ◽  
Vol 273 (14) ◽  
pp. 3160-3171 ◽  
Author(s):  
Pei-Tzu Wu ◽  
Su-Chang Lin ◽  
Chyong-Ing Hsu ◽  
Yen-Chywan Liaw ◽  
Jung-Yaw Lin

Sign in / Sign up

Export Citation Format

Share Document