scholarly journals Membrane-binding domains and cytopathogenesis of the matrix protein of vesicular stomatitis virus.

1994 ◽  
Vol 68 (11) ◽  
pp. 7386-7396 ◽  
Author(s):  
Z Ye ◽  
W Sun ◽  
K Suryanarayana ◽  
P Justice ◽  
D Robinson ◽  
...  
2015 ◽  
Vol 89 (23) ◽  
pp. 11750-11760 ◽  
Author(s):  
Timothy K. Soh ◽  
Sean P. J. Whelan

ABSTRACTVesicular stomatitis virus (VSV) assembly requires condensation of the viral ribonucleoprotein (RNP) core with the matrix protein (M) during budding from the plasma membrane. The RNP core comprises the negative-sense genomic RNA completely coated by the nucleocapsid protein (N) and associated by a phosphoprotein (P) with the large polymerase protein (L). To study the assembly of single viral particles, we tagged M and P with fluorescent proteins. We selected from a library of viruses with insertions in the M gene a replication-competent virus containing a fluorescent M and combined that with our previously described virus containing fluorescent P. Virus particles containing those fusions maintained the same bullet shape appearance as wild-type VSV but had a modest increase in particle length, reflecting the increased genome size. Imaging of the released particles revealed a variation in the amount of M and P assembled into the virions, consistent with a flexible packaging mechanism. We used the recombinants to further study the importance of the late domains in M, which serve to recruit the endosomal sorting complex required for transport (ESCRT) machinery during budding. Mutations in late domains resulted in the accumulation of virions that failed to pinch off from the plasma membrane. Imaging of single virions released from cells that were coinfected with M tagged with enhanced green fluorescent protein and M tagged with mCherry variants in which the late domains of one virus were inactivated by mutation showed a strong bias against the incorporation of the late-domain mutant into the released virions. In contrast, the intracellular expression and membrane association of the two variants were unaltered. These studies provide new tools for imaging particle assembly and enhance our resolution of existing models for assembly of VSV.IMPORTANCEAssembly of vesicular stomatitis virus (VSV) particles requires the separate trafficking of the viral replication machinery, a matrix protein (M) and a glycoprotein, to the plasma membrane. The matrix protein contains a motif termed a “late domain” that engages the host endosomal sorting complex required for transport (ESCRT) machinery to facilitate the release of viral particles. Inactivation of the late domains through mutation results in the accumulation of virions arrested at the point of release. In the study described here, we developed new tools to study VSV assembly by fusing fluorescent proteins to M and to a constituent of the replication machinery, the phosphoprotein (P). We used those tools to show that the late domains of M are required for efficient incorporation into viral particles and that the particles contain a variable quantity of M and P.


1990 ◽  
Vol 71 (4) ◽  
pp. 991-996 ◽  
Author(s):  
P. Coulon ◽  
V. Deutsch ◽  
F. Lafay ◽  
C. Martinet-Edelist ◽  
F. Wyers ◽  
...  

2015 ◽  
Vol 89 (21) ◽  
pp. 11019-11029 ◽  
Author(s):  
Frauke Beilstein ◽  
Linda Obiang ◽  
Hélène Raux ◽  
Yves Gaudin

ABSTRACTThe matrix protein (M) of vesicular stomatitis virus (VSV) is involved in virus assembly, budding, gene regulation, and cellular pathogenesis. Using a yeast two-hybrid system, the M globular domain was shown to interact with LMP2, a catalytic subunit of the immunoproteasome (which replaces the standard proteasome catalytic subunit PSMB6). The interaction was validated by coimmunoprecipitation of M and LMP2 in VSV-infected cells. The sites of interaction were characterized. A single mutation of M (I96A) which significantly impairs the interaction between M and LMP2 was identified. We also show that M preferentially binds to the inactive precursor of LMP2 (bearing an N-terminal propeptide which is cleaved upon LMP2 maturation). Furthermore, taking advantage of a sequence alignment between LMP2 and its proteasome homolog, PSMB6 (which does not bind to M), we identified a mutation (L45R) in the S1 pocket where the protein substrate binds prior to cleavage and a second one (D17A) of a conserved residue essential for the catalytic activity, resulting in a reduction of the level of binding to M. The combination of both mutations abolishes the interaction. Taken together, our data indicate that M binds to LMP2 before its incorporation into the immunoproteasome. As the immunoproteasome promotes the generation of major histocompatibility complex (MHC) class I-compatible peptides, a feature which favors the recognition and the elimination of infected cells by CD8 T cells, we suggest that M, by interfering with the immunoproteasome assembly, has evolved a mechanism that allows infected cells to escape detection and elimination by the immune system.IMPORTANCEThe immunoproteasome promotes the generation of MHC class I-compatible peptides, a feature which favors the recognition and the elimination of infected cells by CD8 T cells. Here, we report on the association of vesicular stomatitis virus (VSV) matrix protein (M) with LMP2, one of the immunoproteasome-specific catalytic subunits. M preferentially binds to the LMP2 inactive precursor. The M-binding site on LMP2 is facing inwards in the immunoproteasome and is therefore not accessible to M after its assembly. Hence, M binds to LMP2 before its incorporation into the immunoproteasome. We suggest that VSV M, by interfering with the immunoproteasome assembly, has evolved a mechanism that allows infected cells to escape detection and elimination by the immune system. Modulating this M-induced immunoproteasome impairment might be relevant in order to optimize VSV for oncolytic virotherapy.


Virology ◽  
1999 ◽  
Vol 263 (1) ◽  
pp. 230-243 ◽  
Author(s):  
Takemasa Sakaguchi ◽  
Tsuneo Uchiyama ◽  
Yutaka Fujii ◽  
Katsuhiro Kiyotani ◽  
Atsushi Kato ◽  
...  

2006 ◽  
Vol 87 (11) ◽  
pp. 3379-3384 ◽  
Author(s):  
Brian D. Lichty ◽  
Heidi McBride ◽  
Stephen Hanson ◽  
John C. Bell

Vesicular stomatitis virus (VSV) is a rhabdovirus that has attracted attention of late as an oncolytic virus and as a vaccine vector. Mutations in the matrix (M) gene of VSV yield attenuated strains that may be very useful in both settings. As a result of this interest in the M protein, this study analysed various M–green fluorescent protein (GFP) fusion constructs. Remarkably, fusion of the N terminus of the M protein to GFP targeted the fluorescent protein to the surface of mitochondria. Mutational analysis indicated that a mitochondrial-targeting motif exists within aa 33–67. Expression of these fusion proteins led to loss of mitochondrial membrane permeability and to an alteration in mitochondrial organization mirroring that seen during viral infection. In addition, a portion of the M protein present in infected cells co-purified with mitochondria. This work may indicate a novel function for this multifunctional viral protein.


1984 ◽  
Vol 62 (11) ◽  
pp. 1174-1180 ◽  
Author(s):  
John Capone ◽  
Hara P. Ghosh

The matrix protein M and the nucleocapsid protein N were isolated from vesicular stomatitis virus and reconstituted into artificial phospholipid vesicles. While the M protein could be reconstituted into phospholipid vesicles, the N protein had no affinity for lipid vesicles. The N protein could, however, associate with phospholipid vesicles in the presence of M protein. Identical results were also obtained when an in vitro system synthesizing M and N proteins was used for reconstitution. The results suggest that M protein is involved in virus maturation by interacting with the viral envelope and the N protein of the nucleoprotein core.


2020 ◽  
Author(s):  
Wei Pan ◽  
Hongmei Wang ◽  
Hongbin He

Abstract Background: Vesicular stomatitis virus (VSV) is an archetypal member of Mononegavirales which causes important diseases in cattle, horses and pigs. The matrix protein (M) of VSV plays critical roles in the replication, assembly/budding and pathogenesis of VSV. To further investigate the role of M during viral growth, we used a two-hybrid system to screen for host factors that interact with the M protein. Results: Here, NADH: ubiquinone oxidoreductase complex assembly factor 4 (Ndufaf4) was identified as an M-binding partner, and this interaction was confirmed by yeast cotransformation and GST pulldown assays. The globular domain of M was mapped and shown to be critical for the M-Ndufaf4 interaction. Two double mutations (E156A/H157A, D180A/E181A) in M impaired the M-Ndufaf4 interaction. Overexpression of Ndufaf4 inhibited VSV propagation, and knockdown of Ndufaf4 by short hairpin RNA (shRNA) markedly promoted VSV replication. Finally, we also demonstrate that the anti-VSV effect of Ndufaf4 is independent of activation of the type I IFN response. These results indicated that Ndufaf4 might exploit other mechanisms to affect VSV replication. Conclusions: In summary, we identify Ndufaf4 as a potential target for the inhibition of VSV propagation. These results provided further insight into the study of VSVpathogenesis.


Sign in / Sign up

Export Citation Format

Share Document