scholarly journals Repression of host RNA polymerase II transcription by herpes simplex virus type 1.

1997 ◽  
Vol 71 (3) ◽  
pp. 2031-2040 ◽  
Author(s):  
C A Spencer ◽  
M E Dahmus ◽  
S A Rice
2009 ◽  
Vol 83 (18) ◽  
pp. 9591-9595 ◽  
Author(s):  
Zackary W. Whitlow ◽  
Thomas M. Kristie

ABSTRACT The transcriptional coactivator host cell factor 1 (HCF-1) is critical for the expression of immediate-early (IE) genes of the alphaherpesviruses herpes simplex virus type 1 (HSV-1) and varicella-zoster virus. HCF-1 may also be involved in the reactivation of these viruses from latency as it is sequestered in the cytoplasm of sensory neurons but is rapidly relocalized to the nucleus upon stimulation that results in reactivation. Here, chromatin immunoprecipitation assays demonstrate that HCF-1 is recruited to IE promoters of viral genomes during the initiation of reactivation, correlating with RNA polymerase II occupancy and IE expression. The data support the model whereby HCF-1 plays a pivotal role in the reactivation of HSV-1 from latency.


2007 ◽  
Vol 82 (5) ◽  
pp. 2339-2349 ◽  
Author(s):  
Padmavathi Sampath ◽  
Neal A. DeLuca

ABSTRACT The binding of herpes simplex virus type 1 ICP4, TATA-binding protein (TBP), and RNA polymerase II (polII) to the promoter regions of representative immediate-early (IE) (ICP0), early (E) (thymidine kinase [tk]), and late (L) (glycoprotein C [gC]) genes on the viral genome was examined as a function of time postinfection, viral DNA replication, cis-acting sites for TFIID in the tk and gC promoters, and genetic background of ICP4. The binding of TBP and polII to the IE ICP0 promoter was independent of the presence of ICP4, whereas the binding of TBP and polII to the tk and gC promoters occurred only when ICP4 also bound to the promoters, suggesting that the presence of ICP4 at the promoters of E and L genes in virus-infected cells is crucial for the formation of transcription complexes on these promoters. When the TATA box of the tk promoter or the initiator element (INR) of the gC promoter was mutated, a reduction in the amount of TBP and polII binding was observed. However, a reduction in the amount of ICP4 binding to the promoters was also observed, suggesting that the binding of TBP-containing complexes and ICP4 is cooperative. The binding of ICP4, TBP, and polII was also observed on the gC promoter at early times postinfection or when DNA synthesis was inhibited, suggesting that transcription complexes may be formed early on L promoters and that additional events or proteins are required for expression. The ability to form these early complexes on the gC promoter required the DNA-binding domain but in addition required the carboxyl-terminal 524 amino acids of ICP4, which is missing the virus n208. This region was not required to form TBP- and polII-containing complexes on the tk promoter. n208 activates E but not L genes during viral infection. These data suggest that a region of ICP4 may differentiate between forming TBP- and polII-containing complexes on E and L promoters.


2001 ◽  
Vol 75 (20) ◽  
pp. 9872-9884 ◽  
Author(s):  
H. L. Jenkins ◽  
C. A. Spencer

ABSTRACT During lytic infection, herpes simplex virus type 1 (HSV-1) represses host transcription, recruits RNA polymerase II (RNAP II) to viral replication compartments, and alters the phosphorylation state of the RNAP II large subunit. Host transcription repression and RNAP II modifications require expression of viral immediate-early (IE) genes. Efficient modification of the RNAP II large subunit to the intermediately phosphorylated (IIi) form requires expression of ICP22 and the UL13 kinase. We have further investigated the mechanisms by which HSV-1 effects global changes in RNAP II transcription by analyzing the RNAP II holoenzyme. We find that the RNAP II general transcription factors (GTFs) remain abundant after infection and are recruited into viral replication compartments, suggesting that they continue to be involved in viral gene transcription. However, virus infection modifies the composition of the RNAP II holoenzyme, in particular triggering the loss of the essential GTF, TFIIE. Loss of TFIIE from the RNAP II holoenzyme requires viral IE gene expression, and viral IE proteins may be redundant in mediating this effect. Although viral IE proteins do not associate with the RNAP II holoenzyme, they interact with RNAP II in complexes of lower molecular mass. As the RNAP II holoenzyme containing TFIIE is necessary for activated transcription initiation and RNAP II large subunit phosphorylation in uninfected cells, virus-induced modifications to the holoenzyme may affect both of these processes, leading to aberrant phosphorylation of the RNAP II large subunit and repression of host gene transcription.


RNA ◽  
2009 ◽  
Vol 16 (1) ◽  
pp. 131-140 ◽  
Author(s):  
S. Belin ◽  
K. Kindbeiter ◽  
S. Hacot ◽  
M. A. Albaret ◽  
J.-X. Roca-Martinez ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A136-A137
Author(s):  
K TSAMAKIDES ◽  
E PANOTOPOULOU ◽  
D DIMITROULOPOULOS ◽  
M CHRISTOPOULO ◽  
D XINOPOULOS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document