scholarly journals Amino Acids in the Capsid Protein of Tomato Yellow Leaf Curl Virus That Are Crucial for Systemic Infection, Particle Formation, and Insect Transmission

1998 ◽  
Vol 72 (12) ◽  
pp. 10050-10057 ◽  
Author(s):  
E. Noris ◽  
A. M. Vaira ◽  
P. Caciagli ◽  
V. Masenga ◽  
B. Gronenborn ◽  
...  

ABSTRACT A functional capsid protein (CP) is essential for host plant infection and insect transmission in monopartite geminiviruses. We studied two defective genomic DNAs of tomato yellow leaf curl virus (TYLCV), Sic and SicRcv. Sic, cloned from a field-infected tomato, was not infectious, whereas SicRcv, which spontaneously originated from Sic, was infectious but not whitefly transmissible. A single amino acid change in the CP was found to be responsible for restoring infectivity. When the amino acid sequences of the CPs of Sic and SicRcv were compared with that of a closely related wild-type virus (TYLCV-Sar), differences were found in the following positions: 129 (P in Sic and SicRcv, Q in Sar), 134 (Q in Sic and Sar, H in SicRcv) and 152 (E in Sic and SicRcv, D in Sar). We constructed TYLCV-Sar variants containing the eight possible amino acid combinations in those three positions and tested them for infectivity and transmissibility. QQD, QQE, QHD, and QHE had a wild-type phenotype, whereas PHD and PHE were infectious but nontransmissible. PQD and PQE mutants were not infectious; however, they replicated and accumulated CP, but not virions, in Nicotiana benthamiana leaf discs. The Q129P replacement is a nonconservative change, which may drastically alter the secondary structure of the CP and affect its ability to form the capsid. The additional Q134H change, however, appeared to compensate for the structural modification. Sequence comparisons among whitefly-transmitted geminiviruses in terms of the CP region studied showed that combinations other than QQD are present in several cases, but never with a P129.

1998 ◽  
Vol 13 (3) ◽  
pp. 393-399 ◽  
Author(s):  
Talya Kunik ◽  
Karuppaiah Palanichelvam ◽  
Henryk Czosnek ◽  
Vitaly Citovsky ◽  
Yedidya Gafni

2016 ◽  
Author(s):  
Moshe Lapidot ◽  
Vitaly Citovsky

Tomato yellow leaf curl virus (TYLCV) is a major pathogen of tomato that causes extensive crop loss worldwide, including the US and Israel. Genetic resistance in the host plant is considered highly effective in the defense against viral infection in the field. Thus, the best way to reduce yield losses due to TYLCV is by breeding tomatoes resistant or tolerant to the virus. To date, only six major TYLCV-resistance loci, termed Ty-1 to Ty-6, have been characterized and mapped to the tomato genome. Among tomato TYLCV-resistant lines containing these loci, we have identified a major recessive quantitative trait locus (QTL) that was mapped to chromosome 4 and designated ty-5. Recently, we identified the gene responsible for the TYLCV resistance at the ty-5 locus as the tomato homolog of the gene encoding messenger RNA surveillance factor Pelota (Pelo). A single amino acid change in the protein is responsible for the resistant phenotype. Pelo is known to participate in the ribosome-recycling phase of protein biosynthesis. Our hypothesis was that the resistant allele of Pelo is a “loss-of-function” mutant, and inhibits or slows-down ribosome recycling. This will negatively affect viral (as well as host-plant) protein synthesis, which may result in slower infection progression. Hence we have proposed the following research objectives: Aim 1: The effect of Pelota on translation of TYLCV proteins: The goal of this objective is to test the effect Pelota may or may not have upon translation of TYLCV proteins following infection of a resistant host. Aim 2: Identify and characterize Pelota cellular localization and interaction with TYLCV proteins: The goal of this objective is to characterize the cellular localization of both Pelota alleles, the TYLCV-resistant and the susceptible allele, to see whether this localization changes following TYLCV infection, and to find out which TYLCV protein interacts with Pelota. Our results demonstrate that upon TYLCV-infection the resistant allele of pelota has a negative effect on viral replication and RNA transcription. It is also shown that pelota interacts with the viral C1 protein, which is the only viral protein essential for TYLCV replication. Following subcellular localization of C1 and Pelota it was found that both protein localize to the same subcellular compartments. This research is innovative and potentially transformative because the role of Peloin plant virus resistance is novel, and understanding its mechanism will lay the foundation for designing new antiviral protection strategies that target translation of viral proteins. BARD Report - Project 4953 Page 2 


1994 ◽  
Vol 12 (5) ◽  
pp. 500-504 ◽  
Author(s):  
Talya Kunik ◽  
Raffi Salomon ◽  
Daniel Zamir ◽  
Nir Navot ◽  
Muhammad Zeidan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document