scholarly journals The Transmembrane Domains of Sindbis Virus Envelope Glycoproteins Induce Cell Death

1998 ◽  
Vol 72 (5) ◽  
pp. 3935-3943 ◽  
Author(s):  
Andrew K. Joe ◽  
Hsin Hsin Foo ◽  
Linda Kleeman ◽  
Beth Levine

ABSTRACT Sindbis virus, the prototype alphavirus, kills cells by inducing apoptosis. To investigate potential mechanisms by which Sindbis virus induces apoptosis, we examined whether specific viral gene products were able to induce cell death. Genes encoding the three structural proteins—capsid, the precursor E1 (6K plus E1), and the precursor E2 (P62 or E3 plus E2)—were cotransfected with a β-galactosidase reporter plasmid in transient-transfection assays in rat prostate adenocarcinoma AT3 cells. Cell death, as determined by measuring the loss of blue cells, was observed in AT3 cells transfected with 6K plus E1 and with P62 but not in cells transfected with capsid. Deletion mutagenesis of P62 indicated that large regions of the cytoplasmic domain and extracellular domain were not essential for the induction of cell death. However, constructs containing the minimal E3 signal sequence fused to the E2 transmembrane domain and the minimal E3 signal sequence fused to the E1 transmembrane domain induced death as efficiently as full-length P62 and 6K plus E1, whereas no cell death was observed after transfection with a control construct containing the E3 signal sequence linked to the transmembrane domain of murine CD4. These data demonstrate that intracellular expression of the transmembrane domains of the Sindbis virus envelope glycoproteins can kill AT3 cells.

2019 ◽  
Vol 109 (10) ◽  
pp. 1689-1697 ◽  
Author(s):  
Wang Chen ◽  
Yan Li ◽  
Ruibin Yan ◽  
Li Xu ◽  
Li Ren ◽  
...  

Clubroot caused by Plasmodiophora brassicaeis one of the most important diseases in cruciferous crops. The recognition of P. brassicae by host plants is thought to occur at the primary infection stage, but the underlying mechanism remains unclear. Secretory proteins as effector candidates play critical roles in the recognition of pathogens and the interactions between pathogens and hosts. In this study, 33 P. brassicae secretory proteins expressed during primary infection were identified through transcriptome, secretory protein prediction, and yeast signal sequence trap analyses. Furthermore, the proteins that could suppress or induce cell death were screened through an Agrobacterium-mediated plant virus transient expression system and a protoplast transient expression system. Two secretory proteins, PBCN_002550 and PBCN_005499, were found to be capable of inducing cell death associated with H2O2 accumulation and electrolyte leakage in Nicotiana benthamiana. Moreover, PBCN_002550 could also induce cell death in Chinese cabbage. In addition, 24 of the remaining 31 tested secretory proteins could suppress mouse Bcl-2-associated X protein-induced cell death, and 28 proteins could suppress PBCN_002550-induced cell death.


2000 ◽  
Vol 275 (40) ◽  
pp. 31428-31437 ◽  
Author(s):  
Anne Op De Beeck ◽  
Roland Montserret ◽  
Sandrine Duvet ◽  
Laurence Cocquerel ◽  
René Cacan ◽  
...  

2002 ◽  
Vol 76 (22) ◽  
pp. 11469-11475 ◽  
Author(s):  
Guoying Zhou ◽  
Bernard Roizman

ABSTRACT Earlier studies have shown that herpes simplex virus 1 (HSV-1) virions of mutant lacking glycoprotein D (gD) and made in either complementing (gD−/+ stocks) or noncomplementing cells (gD−/− stocks) induce apoptosis. Subsequent studies have shown that apoptosis induced by gD−/− mutant virus stocks can be blocked by in trans delivery of viral genes that encode either intact gD or a mixture of two genes encoding the glycoprotein ectodomain plus transmembrane domain (gD-B) and transmembrane domain plus the cytoplasmic carboxyl terminus of the protein (gD-D), respectively. Since the presence of the transmembrane domains was critical for precluding apoptosis in the bipartite system, the question arose whether the two components, gD-B and gD-D, form a heterodimer mediated by an unpaired cysteine located in the transmembrane domain. We report the following. (i) The substitution of the unpaired cysteine with serine in either gD-B or gD-D truncated forms of gD disabled the ability of gD-D and gD-B to block apoptosis. (ii) Immunoprecipitation of gD-D coprecipitated gD-B only from lysates of cells transduced with gD-D and gD-B containing the cysteine in the transmembrane domains. Replacement of cysteine with serine ablated coprecipitation of the components. (ii) The mixture of gD-D and gD-B complemented at a low level gD−/+ virions. We conclude that the gD-B and gD-D can form a heterodimer dependent on the presence of cysteines in the transmembrane domain and the heterodimer can substitute for intact gD but at a much reduced efficiency.


2002 ◽  
Vol 36 ◽  
pp. 5
Author(s):  
Anna R. Ciccaglione ◽  
Cinzia Marcantonio ◽  
Angela Costantino ◽  
Elena Tritarelli ◽  
Cristina Cammarata ◽  
...  

2001 ◽  
Vol 82 (7) ◽  
pp. 1629-1635 ◽  
Author(s):  
Laurence Cocquerel ◽  
Jean-Christophe Meunier ◽  
Anne Op de Beeck ◽  
Dorine Bonte ◽  
Czeslaw Wychowski ◽  
...  

The hepatitis C virus (HCV) genome encodes two envelope glycoproteins, E1 and E2. These proteins contain a large N-terminal ectodomain, and are anchored into membranes by their C-terminal transmembrane domain (TMD). The TMDs of HCV envelope proteins are multifunctional. In addition to their role as membrane anchors, they possess a signal sequence function in their C-terminal half, and play a major role in subcellular localization and assembly of these envelope proteins. In this work, the expression of full-length E2 led to secretion of a proportion of this protein, which is likely to be due to inefficient membrane insertion of a fraction of E2 expressed alone. However, when E1 and E2 were coexpressed from the same polyprotein, E2 was not secreted and remained tightly associated with membranes, suggesting that an early interaction between the TMDs of HCV envelope proteins improves the stability of membrane insertion of E2. These results reinforce the hypothesis that the TMDs of E1 and E2 are major factors in the assembly of the HCV envelope glycoprotein complex.


2009 ◽  
Vol 385 (2) ◽  
pp. 257-262 ◽  
Author(s):  
Xiaojing Lin ◽  
Yonghui Zhang ◽  
Shengli Bi ◽  
Jian Lu ◽  
Honglan Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document