scholarly journals Identification of Directly Infected Cells in the Bone Marrow of Neonatal Moloney Murine Leukemia Virus-Infected Mice by Use of a Moloney Murine Leukemia Virus-Based Vector

1999 ◽  
Vol 73 (2) ◽  
pp. 1617-1623 ◽  
Author(s):  
Michael A. Okimoto ◽  
Hung Fan

ABSTRACT Early bone marrow infection of Moloney murine leukemia virus (M-MuLV)-infected mice was studied. Previous experiments indicated that early bone marrow infection is essential for the efficient development of T lymphoma. In order to identify the cellular pathway of infection in the bone marrow, infection of mice with a helper-free replication-defective M-MuLV-based retroviral vector was carried out. Such a vector will undergo only one round of infection, without spreading to other cells; thus, cells infected by the initially injected virus (directly infected cells) can be identified. For these experiments, the BAG vector that expresses bacterial β-galactosidase was employed. Neonatal NIH/Swiss mice were inoculated intraperitoneally with ca. 106 infectious units of a BAG vector pseudotyped with M-MuLV proteins, and bone marrow cells were recovered 2 to 12 days postinfection. Single-cell suspensions were tested for infection by staining with X-Gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) or by immunofluorescence with an anti-β-galactosidase antibody. Two sizes of infected cells were evident: large multinucleated cells and small nondescript (presumptively hematopoietic) cells. Secondary stains for lineage-specific markers indicated that the large cells were osteoclasts. Some of the small cells expressed nonspecific esterase, which placed them in the myeloid lineage, but they lacked markers for hematopoietic progenitors (mac-1, gr-1, sca-1, and CD34). These results provide evidence for primary M-MuLV infection of osteoclasts or osteoclast progenitors in the bone marrow, and they suggest that known hematopoietic progenitors are not primary targets for infection. However, the subsequent spread of infection to hematopoietic progenitors was indicated, since bone marrow from mice infected in parallel with replication-competent wild-type M-MuLV showed detectable infection in small cells positive for mac-1 or CD34, as well as in osteoclasts.

Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3385-3391 ◽  
Author(s):  
Stephane Barrette ◽  
Janet L. Douglas ◽  
Nancy E. Seidel ◽  
David M. Bodine

Abstract The low levels of transduction of human hematopoietic stem cells (HSCs) with Moloney murine leukemia virus (MLV) vectors have been an obstacle to gene therapy for hematopoietic diseases. It has been demonstrated that lentivirus vectors are more efficient than MLV vectors at transducing nondividing cell lines as well as human CD34+ cells and severe combined immunodeficiency disease repopulating cells. We compared transduction of cell lines and Lin− bone marrow cells, using a vesicular stomatitis virus G (VSV-G)-pseudotyped lentivirus or MLV vectors carrying a green fluorescent protein marker gene. As predicted, the lentivirus vector was more efficient at transducing mouse and human growth-inhibited cell lines. The transduction of mouse HSC by lentivirus vectors was compared directly to MLV vectors in a co-transduction assay. In this assay, transduction by ecotropic MLV is a positive internal control for downstream steps in retrovirus transduction, including cell division. Both the VSV-G lentivirus and MLV vectors transduced mouse HSCs maintained in cytokine-free medium at very low frequency, as did the ecotropic control. The lentivirus vector and the MLV vector were equally efficient at transducing bone marrow HSCs cultured in interleukin 3 (IL-3), IL-6, and stem cell factor for 96 hours. In conclusion, although lentivirus vectors are able to transduce growth-inhibited cell lines, the cell cycle status of HSCs render them resistant to lentivirus-mediated transduction, and it is hypothesized that entry into cycle, not necessarily division, may be a requirement for efficient lentivirus-mediated transduction.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3385-3391 ◽  
Author(s):  
Stephane Barrette ◽  
Janet L. Douglas ◽  
Nancy E. Seidel ◽  
David M. Bodine

The low levels of transduction of human hematopoietic stem cells (HSCs) with Moloney murine leukemia virus (MLV) vectors have been an obstacle to gene therapy for hematopoietic diseases. It has been demonstrated that lentivirus vectors are more efficient than MLV vectors at transducing nondividing cell lines as well as human CD34+ cells and severe combined immunodeficiency disease repopulating cells. We compared transduction of cell lines and Lin− bone marrow cells, using a vesicular stomatitis virus G (VSV-G)-pseudotyped lentivirus or MLV vectors carrying a green fluorescent protein marker gene. As predicted, the lentivirus vector was more efficient at transducing mouse and human growth-inhibited cell lines. The transduction of mouse HSC by lentivirus vectors was compared directly to MLV vectors in a co-transduction assay. In this assay, transduction by ecotropic MLV is a positive internal control for downstream steps in retrovirus transduction, including cell division. Both the VSV-G lentivirus and MLV vectors transduced mouse HSCs maintained in cytokine-free medium at very low frequency, as did the ecotropic control. The lentivirus vector and the MLV vector were equally efficient at transducing bone marrow HSCs cultured in interleukin 3 (IL-3), IL-6, and stem cell factor for 96 hours. In conclusion, although lentivirus vectors are able to transduce growth-inhibited cell lines, the cell cycle status of HSCs render them resistant to lentivirus-mediated transduction, and it is hypothesized that entry into cycle, not necessarily division, may be a requirement for efficient lentivirus-mediated transduction.


2001 ◽  
Vol 75 (23) ◽  
pp. 11365-11372 ◽  
Author(s):  
Lilin Lai ◽  
Hongmei Liu ◽  
Xiaoyun Wu ◽  
John C. Kappes

ABSTRACT Mutations in the IN domain of retroviral DNA may affect multiple steps of the virus life cycle, suggesting that the IN protein may have other functions in addition to its integration function. We previously reported that the human immunodeficiency virus type 1 IN protein is required for efficient viral DNA synthesis and that this function requires specific interaction with other viral components but not enzyme (integration) activity. In this report, we characterized the structure and function of the Moloney murine leukemia virus (MLV) IN protein in viral DNA synthesis. Using an MLV vector containing green fluorescent protein as a sensitive reporter for virus infection, we found that mutations in either the catalytic triad (D184A) or the HHCC motif (H61A) reduced infectivity by approximately 1,000-fold. Mutations that deleted the entire IN (ΔIN) or 34 C-terminal amino acid residues (Δ34) were more severely defective, with infectivity levels consistently reduced by 10,000-fold. Immunoblot analysis indicated that these mutants were similar to wild-type MLV with respect to virion production and proteolytic processing of the Gag and Pol precursor proteins. Using semiquantitative PCR to analyze viral cDNA synthesis in infected cells, we found the Δ34 and ΔIN mutants to be markedly impaired while the D184A and H61A mutants synthesized cDNA at levels similar to the wild type. The DNA synthesis defect was rescued by complementing the Δ34 and ΔIN mutants intrans with either wild-type IN or the D184A mutant IN, provided as a Gag-IN fusion protein. However, the DNA synthesis defect of ΔIN mutant virions could not be complemented with the Δ34 IN mutant. Taken together, these analyses strongly suggested that the MLV IN protein itself is required for efficient viral DNA synthesis and that this function may be conserved among other retroviruses.


1985 ◽  
Vol 162 (5) ◽  
pp. 1421-1434 ◽  
Author(s):  
G F Tidmarsh ◽  
M O Dailey ◽  
C A Whitlock ◽  
E Pillemer ◽  
I L Weissman

Animals injected with Abelson murine leukemia virus (A-MuLV) rapidly develop fatal bone marrow-derived lymphosarcomas. In all such diseased animals tested, a subpopulation of bone marrow cells expressed a monoclonal antibody-defined, B lineage transformation-associated antigen (6C3 Ag) at levels increased from that detected on normal lymphocytes. Cells bearing a high level of this antigen were found to be transformed as measured by clonal growth in agar, and they expressed surface antigen markers characteristic of early pre-B cells. High-level antigen-expressing cells were found in the bone marrow, lymph nodes, and spleen, but never in the thymus of diseased animals. This distribution agrees with the published pathology of Abelson disease.


1977 ◽  
Vol 146 (2) ◽  
pp. 422-434 ◽  
Author(s):  
P R McClintock ◽  
J N Ihle ◽  
D R Joseph

By competition radioimmune assays with antisera against AKR murine leukemia virus (MuLV) gp 71 or antisera against xenotropic virus, and iodinated AKR MuLV gp71 or BALB(X) gp71, antigens serologically indistinguishable from the viral antigens can be detected in tissues of normal mice in the absence of overt virus expression. An antigen serologically indistinguishable from AKR MuLV gp71 can be readily detected in normal bone marrow cells of the common strains of mice including NIH Swiss, 129/J, and SWR/J, as well as in Mus cervicolor and Mus musculus casteneus. In contrast, this antigen is not detected in normal spleen, thymus, lymph nodes, or serum. Similarly, an antigen serologically indistinguishable from BALB(X) gp71 was found in all normal mouse sera examined. This antigen was not present in fetal liver, perfused adult liver, thymus, spleen, lymph nodes, or bone marrow of the mice examined. An equivalent antigen was detected in sera from Mus musculus casteneus but not in sera from Mus cervicolor.


Virology ◽  
1998 ◽  
Vol 242 (2) ◽  
pp. 357-365 ◽  
Author(s):  
Stefan Mazgareanu ◽  
Justus G. Müller ◽  
Stefanie Czub ◽  
Simone Schimmer ◽  
Martin Bredt ◽  
...  

2007 ◽  
Vol 81 (13) ◽  
pp. 7274-7279 ◽  
Author(s):  
Samantha L. Finstad ◽  
Naomi Rosenberg ◽  
Laura S. Levy

ABSTRACT Infection with a recombinant murine-feline gammaretrovirus, MoFe2, or with the parent virus, Moloney murine leukemia virus, caused significant reduction in B-lymphoid differentiation of bone marrow at 2 to 8 weeks postinfection. The suppression was selective, in that myeloid potential was significantly increased by infection. Analysis of cell surface markers and immunoglobulin H gene rearrangements in an in vitro model demonstrated normal B-lymphoid differentiation after infection but significantly reduced viability of differentiating cells. This reduction in viability may confer a selective advantage on undifferentiated lymphoid progenitors in the bone marrow of gammaretrovirus-infected animals and thereby contribute to the establishment of a premalignant state.


Sign in / Sign up

Export Citation Format

Share Document