scholarly journals Comparison of Second-Strand Transfer Requirements and RNase H Cleavages Catalyzed by Human Immunodeficiency Virus Type 1 Reverse Transcriptase (RT) and E478Q RT

2000 ◽  
Vol 74 (20) ◽  
pp. 9668-9679 ◽  
Author(s):  
Christine Smith Snyder ◽  
Monica J. Roth

ABSTRACT Truncated tRNA-DNA mimics were examined in an in vitro assay for second-strand transfer during human immunodeficiency virus type 1 (HIV-1) reverse transcription. Strand transfer in this system requires the progressive degradation of the RNA within the 18-mer tRNA-DNA (plus-strand strong stop DNA) intermediate to products approximately 8 nucleotides in length. The ability of the truncated substrates to substitute for directional processing by RNase H or reverse transcriptase (RT) was examined. Using wild-type HIV-1 RT, substrates which truncated the 5′ end of the tRNA primer by 6, 9, and 12 nucleotides (Δ6, Δ9, and Δ12, respectively) were recognized by RNase H and resulted in strand transfer. An overlap of 5 nucleotides between the acceptor and newly synthesized DNA template was sufficient for strand transfer. The mutant RT, E478Q correctly catalyzed the initial cleavage of the 18-mer tRNA-DNA mimic in the presence of Mn2+; however, no directional processing was observed. In contrast, no RNase H activity was observed with the Δ6, Δ9, and Δ12 substrates with E478Q RT in this strand transfer assay. However, when complemented with Escherichia coli RNase H, E478Q RT supported strand transfer with the truncated substrates. E478Q RT did cleave the truncated forms of the substrates, Δ6, Δ9, and Δ12, in a polymerase-independent assay. The size requirements of the substrates which were cleaved by the polymerase-independent RNase H activity of E478Q RT are defined.

1997 ◽  
Vol 8 (4) ◽  
pp. 353-362 ◽  
Author(s):  
SW Baertschi ◽  
AS Cantrell ◽  
MT Kuhfeld ◽  
U Lorenz ◽  
DB Boyd ◽  
...  

Previous work by Hafkemeyer et al. (1991) [ Nucleic Acids Research19: 4059–4065] indicated that a degradation product of ceftazidime, termed HP 0.35, was active against the RNase H activity of human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) reverse transcriptase (RT) in vitro. Attempting to repeat these results, we isolated HP 0.35 from an aqueous degradation of ceftazidime and, after careful purification, we found HP 0.35 to be essentially inactive against both the polymerase and RNase H domains of HIV-1 RT (IC50 of >100 μg mL−1). During the investigation we discovered that polymeric degradation products of ceftazidime inhibited both the polymerase and, to a greater extent, the RNase H activities of HIV-1 RT in vitro (IC50 approximately 0.1 and 0.01 μg mL−1, respectively). Subjecting HP 0.35 to conditions under which it could polymerize induced inhibitory activity similar to that of the polymeric ceftazidime degradation products. It is proposed that the previously reported activity of HP 0.35 may have resulted from the presence of low levels of polymeric material either from incomplete purification or from polymerization of HP 0.35 during storage or in vitro testing.


2010 ◽  
Vol 55 (1) ◽  
pp. 42-49 ◽  
Author(s):  
Yasuhiro Koh ◽  
Hillel Haim ◽  
Alan Engelman

ABSTRACTPharmacokinetic and pharmacodynamic considerations significantly impact infectious disease treatment options. One aspect of pharmacodynamics is the postantibiotic effect, classically defined as delayed bacterial growth after antibiotic removal. The same principle can apply to antiviral drugs. For example, significant delays in human immunodeficiency virus type 1 (HIV-1) replication can be observed after nucleoside/nucleotide reverse transcriptase inhibitor (N/NtRTI) removal from culture medium, because these prodrugs must be anabolized into active, phosphorylated forms once internalized into cells. A relatively new class of anti-HIV-1 drugs is the integrase strand transfer inhibitors (INSTIs), and the INSTIs raltegravir (RAL) and elvitegravir (EVG) were tested here alongside positive N/NtRTI controls tenofovir disoproxil fumarate (TDF) and azidothymidine (AZT), as well as the nonnucleoside reverse transcriptase inhibitor negative control nevirapine (NVP), to assess potential postantiviral effects. Transformed and primary CD4-positive cells pretreated with INSTIs significantly resisted subsequent challenge by HIV-1, revealing the following hierarchy of persistent intracellular drug strength: TDF > EVG ∼ AZT > RAL > NVP. A modified time-of-addition assay was moreover developed to assess residual drug activity levels. Approximately 0.8% of RAL and 2% of initial EVG and TDF 1-h pulse drug levels persisted during the acute phase of HIV-1 infection. EVG furthermore displayed significant virucidal activity. Although there is no reason to suspect obligate intracellular modification, this study nevertheless defines significant intracellular persistence of prototype INSTIs. Ongoing second-generation formulations should therefore consider the potential for significant postantiviral effects among this drug class. Combined intracellular persistence and virucidal activities suggest potential pre-exposure prophylaxis applications for EVG.


2004 ◽  
Vol 78 (10) ◽  
pp. 5056-5067 ◽  
Author(s):  
Eric A. Hehl ◽  
Pheroze Joshi ◽  
Ganjam V. Kalpana ◽  
Vinayaka R. Prasad

ABSTRACT Reverse transcriptase (RT) and integrase (IN) are two key catalytic enzymes encoded by all retroviruses. It has been shown that a specific interaction occurs between the human immunodeficiency virus type 1 (HIV-1) RT and IN proteins (X. Wu, H. Liu, H. Xiao, J. A. Conway, E. Hehl, G. V. Kalpana, V. R. Prasad, and J. C. Kappes, J. Virol. 73:2126-2135, 1999). We have now further examined this interaction to map the binding domains and to determine the effects of interaction on enzyme function. Using recombinant purified proteins, we have found that both a HIV-1 RT heterodimer (p66/p51) and its individual subunits, p51 and p66, are able to bind to HIV-1 IN. An oligomerization-defective mutant of IN, V260E, retained the ability to bind to RT, showing that IN oligomerization may not be required for interaction. Furthermore, we report that the C-terminal domain of IN, but not the N-terminal zinc-binding domain or the catalytic core domain, was able to bind to heterodimeric RT. Deletion analysis to map the IN-binding domain on RT revealed two separate IN-interacting domains: the fingers-palm domain and the carboxy-terminal half of the connection subdomain. The carboxy-terminal domain of IN alone retained its interaction with both the fingers-palm and the connection-RNase H fragments of RT, but not with the half connection-RNase H fragment. This interaction was not bridged by nucleic acids, as shown by micrococcal nuclease treatment of the proteins prior to the binding reaction. The influences of IN and RT on each other's activities were investigated by performing RT processivity and IN-mediated 3′ processing and joining reactions in the presence of both proteins. Our results suggest that, while IN had no influence on RT processivity, RT stimulated the IN-mediated strand transfer reaction in a dose-dependent manner up to 155-fold. Thus, a functional interaction between these two viral enzymes may occur during viral replication.


2004 ◽  
Vol 78 (16) ◽  
pp. 8761-8770 ◽  
Author(s):  
Galina N. Nikolenko ◽  
Evguenia S. Svarovskaia ◽  
Krista A. Delviks ◽  
Vinay K. Pathak

ABSTRACT Template-switching events during reverse transcription are necessary for completion of retroviral replication and recombination. Structural determinants of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) that influence its template-switching frequency are not known. To identify determinants of HIV-1 RT that affect the frequency of template switching, we developed an in vivo assay in which RT template-switching events during viral replication resulted in functional reconstitution of the green fluorescent protein gene. A survey of single amino acid substitutions near the polymerase active site or deoxynucleoside triphosphate-binding site of HIV-1 RT indicated that several substitutions increased the rate of RT template switching. Several mutations associated with resistance to antiviral nucleoside analogs (K65R, L74V, E89G, Q151N, and M184I) dramatically increased RT template-switching frequencies by two- to sixfold in a single replication cycle. In contrast, substitutions in the RNase H domain (H539N, D549N) decreased the frequency of RT template switching by twofold. Depletion of intracellular nucleotide pools by hydroxyurea treatment of cells used as targets for infection resulted in a 1.8-fold increase in the frequency of RT template switching. These results indicate that the dynamic steady state between polymerase and RNase H activities is an important determinant of HIV-1 RT template switching and establish that HIV-1 recombination occurs by the previously described dynamic copy choice mechanism. These results also indicate that mutations conferring resistance to antiviral drugs can increase the frequency of RT template switching and may influence the rate of retroviral recombination and viral evolution.


2008 ◽  
Vol 52 (7) ◽  
pp. 2544-2554 ◽  
Author(s):  
Katty Terrazas-Aranda ◽  
Yven Van Herrewege ◽  
Daria Hazuda ◽  
Paul Lewi ◽  
Roberta Costi ◽  
...  

ABSTRACT Conceptually, blocking human immunodeficiency virus type 1 (HIV-1) integration is the last possibility for preventing irreversible cellular infection. Using cocultures of monocyte-derived dendritic cells and CD4+ T cells, which represent primary targets in sexual transmission, we demonstrated that blocking integration with integrase strand transfer inhibitors (InSTIs), particularly L-870812, could consistently block cell-free and cell-associated HIV-1 infection. In a pretreatment setting in which the compound was present before and during infection and was afterwards gradually diluted during the culture period, the naphthyridine carboxamide L-870812 blocked infection with the cell-free and cell-associated HIV-1 Ba-L strain at concentrations of, respectively, 1,000 and 10,000 nM. The potency of L-870812 was similar to that of the nucleotide reverse transcriptase inhibitor R-9-(2-phosphonylmethoxypropyl) adenine (PMPA) but one or two orders of magnitude lower than those of the nonnucleoside reverse transcriptase inhibitors UC781 and TMC120. In contrast, the diketo acid RDS derivative InSTIs showed clear-cut but weaker antiviral activity than L-870812. Moreover, L-870812 completely blocked subtype C and CRFO2_AG primary isolates, which are prevalent in the African heterosexual epidemic. Furthermore, the addition of micromolar concentrations of L-870812 even 24 h after infection could still block both cell-free and cell-associated Ba-L, opening the prospect of postexposure prophylaxis. Finally, an evaluation of the combined activity of L-870812 with either T20, zidovudine, PMPA, UC781, or TMC120 against replication-deficient HIV-1 Ba-L (env) pseudovirus suggested synergistic activity for all combinations. Importantly, compounds selected for the study by using the coculture model were devoid of acute or delayed cytotoxic effects at HIV-blocking concentrations. Therefore, these findings provide evidence supporting consideration of HIV-1 integration as a target for microbicide development.


1999 ◽  
Vol 73 (6) ◽  
pp. 4794-4805 ◽  
Author(s):  
Tiyun Wu ◽  
Jianhui Guo ◽  
Julian Bess ◽  
Louis E. Henderson ◽  
Judith G. Levin

ABSTRACT We have developed a reconstituted system which models the events associated with human immunodeficiency virus type 1 (HIV-1) plus-strand transfer. These events include synthesis of plus-strand strong-stop DNA [(+) SSDNA] from a minus-strand DNA donor template covalently attached to human tRNA3 Lys, tRNA primer removal, and annealing of (+) SSDNA to the minus-strand DNA acceptor template. Termination of (+) SSDNA synthesis at the methyl A (nucleotide 58) near the 3′ end of tRNA3 Lys reconstitutes the 18-nucleotide primer binding site (PBS). Analysis of (+) SSDNA synthesis in vitro and in HIV-1 endogenous reactions indicated another major termination site: the pseudouridine at nucleotide 55. In certain HIV-1 strains, complementarity between nucleotides 56 to 58 and the first three bases downstream of the PBS could allow all of the (+) SSDNA products to be productively transferred. Undermodification of the tRNA may be responsible for termination beyond the methyl A. In studies of tRNA removal, we find that initial cleavage of the 3′ rA by RNase H is not sufficient to achieve successful strand transfer. The RNA-DNA hybrid formed by the penultimate 17 bases of tRNA still annealed to (+) SSDNA must also be destabilized. This can occur by removal of additional 3′-terminal bases by RNase H (added either in cis ortrans). Alternatively, the nucleic acid chaperone activity of nucleocapsid protein (NC) can catalyze this destabilization. NC stimulates annealing of the complementary PBS sequences in (+) SSDNA and the acceptor DNA template. Reverse transcriptase also promotes annealing but to a lesser extent than NC.


2001 ◽  
Vol 75 (23) ◽  
pp. 11874-11880 ◽  
Author(s):  
Hong-Qiang Gao ◽  
Stefan G. Sarafianos ◽  
Edward Arnold ◽  
Stephen H. Hughes

ABSTRACT The synthesis of retroviral DNA is initiated near the 5′ end of the RNA. DNA synthesis is transferred from the 5′ end to the 3′ end of viral RNA in an RNase H-dependent step. In the case of human immunodeficiency virus type 1 (HIV-1) (and certain other retroviruses that have complex secondary structures at the ends of the viral RNA), there is the possibility that DNA synthesis can lead to a self-priming event that would block viral replication. The extent of RNase H cleavage must be sufficient to allow the strand transfer reaction to occur, but not so extensive that self-priming occurs. We have used a series of model RNA substrates, with and without a 5′ cap, to investigate the rules governing RNase H cleavage at the 5′ end of the HIV-1 genome. These in vitro RNase H cleavage reactions produce an RNA fragment of the size needed to block self-priming but still allow strand transfer. The cleavages seen in vitro can be understood in light of the structure of HIV-1 reverse transcriptase in a complex with an RNA/DNA substrate.


2006 ◽  
Vol 50 (8) ◽  
pp. 2772-2781 ◽  
Author(s):  
Zhijun Zhang ◽  
Michelle Walker ◽  
Wen Xu ◽  
Jae Hoon Shim ◽  
Jean-Luc Girardet ◽  
...  

ABSTRACT Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies.


1999 ◽  
Vol 43 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Gadi Borkow ◽  
Dominique Arion ◽  
Mark A. Wainberg ◽  
Michael A. Parniak

ABSTRACT N-[4-Chloro-3-(3-methyl-2-butenyloxy)phenyl]-2-methyl-3-furancarbothioamide (UC781) is an exceptionally potent nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. We found that a 1:1 molar combination of UC781 and 3′-azido-3′-deoxythymidine (AZT) showed high-level synergy in inhibiting the replication of AZT-resistant virus, implying that UC781 can restore antiviral activity to AZT against AZT-resistant HIV-1. Neither the nevirapine plus AZT nor the 2′,5′-bis-O-(t-butyldimethylsilyl)-3′-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide plus AZT combinations had this effect. Studies with purified HIV-1 reverse transcriptase (from a wild type and an AZT-resistant mutant) showed that UC781 was a potent inhibitor of the pyrophosphorolytic cleavage of nucleotides from the 3′ end of the DNA polymerization primer, a process that we have proposed to be critical for the phenotypic expression of AZT resistance. Combinations of UC781 plus AZT did not act in synergy to inhibit the replication of either wild-type virus or UC781-resistant HIV-1. Importantly, the time to the development of viral resistance to combinations of UC781 plus AZT is significantly delayed compared to the time to the development of resistance to either drug alone.


Sign in / Sign up

Export Citation Format

Share Document