Inhibition of Human Immunodeficiency Virus Type 1 Reverse Transcriptase by Degradation Products of Ceftazidime

1997 ◽  
Vol 8 (4) ◽  
pp. 353-362 ◽  
Author(s):  
SW Baertschi ◽  
AS Cantrell ◽  
MT Kuhfeld ◽  
U Lorenz ◽  
DB Boyd ◽  
...  

Previous work by Hafkemeyer et al. (1991) [ Nucleic Acids Research19: 4059–4065] indicated that a degradation product of ceftazidime, termed HP 0.35, was active against the RNase H activity of human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) reverse transcriptase (RT) in vitro. Attempting to repeat these results, we isolated HP 0.35 from an aqueous degradation of ceftazidime and, after careful purification, we found HP 0.35 to be essentially inactive against both the polymerase and RNase H domains of HIV-1 RT (IC50 of >100 μg mL−1). During the investigation we discovered that polymeric degradation products of ceftazidime inhibited both the polymerase and, to a greater extent, the RNase H activities of HIV-1 RT in vitro (IC50 approximately 0.1 and 0.01 μg mL−1, respectively). Subjecting HP 0.35 to conditions under which it could polymerize induced inhibitory activity similar to that of the polymeric ceftazidime degradation products. It is proposed that the previously reported activity of HP 0.35 may have resulted from the presence of low levels of polymeric material either from incomplete purification or from polymerization of HP 0.35 during storage or in vitro testing.

1998 ◽  
Vol 9 (5) ◽  
pp. 412-421 ◽  
Author(s):  
C Chamorro ◽  
M-J Camarasa ◽  
M-J Pérez-Pérez ◽  
E de Clercq ◽  
J Balzarini ◽  
...  

Novel derivatives of the potent human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitor TSAO-T have been designed, synthesized and tested for their in vitro antiretro-viral activity against HIV. These TSAO-T derivatives have been designed as potential bidentate inhibitors of HIV-1 RT, which combine in their structure the functionality of a non-nucleoside RT inhibitor (TSAO-T) and a bivalent ion-chelating moiety (a β-diketone moiety) linked through an appropriate spacer to the N-3 of thymine of TSAO-T . Some of the new compounds have an anti-HIV-1 activity comparable to that of the parent compound TSAO-T, but display a markedly increased antiviral selectivity. There was a clear relationship between antiviral activity and the length of the spacer group that links the TSAO molecule with the chelating moiety. A shorter spacer invariably resulted in increased antiviral potency. None of the TSAO-T derivatives were endowed with anti-HIV-2 activity.


2004 ◽  
Vol 78 (10) ◽  
pp. 5056-5067 ◽  
Author(s):  
Eric A. Hehl ◽  
Pheroze Joshi ◽  
Ganjam V. Kalpana ◽  
Vinayaka R. Prasad

ABSTRACT Reverse transcriptase (RT) and integrase (IN) are two key catalytic enzymes encoded by all retroviruses. It has been shown that a specific interaction occurs between the human immunodeficiency virus type 1 (HIV-1) RT and IN proteins (X. Wu, H. Liu, H. Xiao, J. A. Conway, E. Hehl, G. V. Kalpana, V. R. Prasad, and J. C. Kappes, J. Virol. 73:2126-2135, 1999). We have now further examined this interaction to map the binding domains and to determine the effects of interaction on enzyme function. Using recombinant purified proteins, we have found that both a HIV-1 RT heterodimer (p66/p51) and its individual subunits, p51 and p66, are able to bind to HIV-1 IN. An oligomerization-defective mutant of IN, V260E, retained the ability to bind to RT, showing that IN oligomerization may not be required for interaction. Furthermore, we report that the C-terminal domain of IN, but not the N-terminal zinc-binding domain or the catalytic core domain, was able to bind to heterodimeric RT. Deletion analysis to map the IN-binding domain on RT revealed two separate IN-interacting domains: the fingers-palm domain and the carboxy-terminal half of the connection subdomain. The carboxy-terminal domain of IN alone retained its interaction with both the fingers-palm and the connection-RNase H fragments of RT, but not with the half connection-RNase H fragment. This interaction was not bridged by nucleic acids, as shown by micrococcal nuclease treatment of the proteins prior to the binding reaction. The influences of IN and RT on each other's activities were investigated by performing RT processivity and IN-mediated 3′ processing and joining reactions in the presence of both proteins. Our results suggest that, while IN had no influence on RT processivity, RT stimulated the IN-mediated strand transfer reaction in a dose-dependent manner up to 155-fold. Thus, a functional interaction between these two viral enzymes may occur during viral replication.


2004 ◽  
Vol 78 (16) ◽  
pp. 8761-8770 ◽  
Author(s):  
Galina N. Nikolenko ◽  
Evguenia S. Svarovskaia ◽  
Krista A. Delviks ◽  
Vinay K. Pathak

ABSTRACT Template-switching events during reverse transcription are necessary for completion of retroviral replication and recombination. Structural determinants of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) that influence its template-switching frequency are not known. To identify determinants of HIV-1 RT that affect the frequency of template switching, we developed an in vivo assay in which RT template-switching events during viral replication resulted in functional reconstitution of the green fluorescent protein gene. A survey of single amino acid substitutions near the polymerase active site or deoxynucleoside triphosphate-binding site of HIV-1 RT indicated that several substitutions increased the rate of RT template switching. Several mutations associated with resistance to antiviral nucleoside analogs (K65R, L74V, E89G, Q151N, and M184I) dramatically increased RT template-switching frequencies by two- to sixfold in a single replication cycle. In contrast, substitutions in the RNase H domain (H539N, D549N) decreased the frequency of RT template switching by twofold. Depletion of intracellular nucleotide pools by hydroxyurea treatment of cells used as targets for infection resulted in a 1.8-fold increase in the frequency of RT template switching. These results indicate that the dynamic steady state between polymerase and RNase H activities is an important determinant of HIV-1 RT template switching and establish that HIV-1 recombination occurs by the previously described dynamic copy choice mechanism. These results also indicate that mutations conferring resistance to antiviral drugs can increase the frequency of RT template switching and may influence the rate of retroviral recombination and viral evolution.


2002 ◽  
Vol 76 (13) ◽  
pp. 6836-6840 ◽  
Author(s):  
P. Richard Harrigan ◽  
Mahboob Salim ◽  
David K. Stammers ◽  
Brian Wynhoven ◽  
Zabrina L. Brumme ◽  
...  

ABSTRACT The Y318F substitution in the 3′ region of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been linked to nonnucleoside RT inhibitor (NNRTI) resistance in vitro. A systematic search of a large phenotypic-genotypic database (Virco) linked the Y318F substitution with a >10-fold decrease in NNRTI susceptibility in >85% of clinically derived isolates. There was a significant association between Y318F and use of delavirdine (P = 10−11) and nevirapine (P = 10−6) but not efavirenz (P = 0.3). Site-directed HIV-1 Y318F mutants in an HXB2 background displayed 42-fold-decreased susceptibility to delavirdine but <3-fold-decreased susceptibility to nevirapine or efavirenz. Combinations of Y318F with K103N, Y181C, or both resulted in decreased efavirenz susceptibility of 43-, 3.3-, and 84-fold, respectively, as well as >100- and >60-fold decreases in delavirdine and nevirapine susceptibility, respectively. These results indicate the importance of the Y318F substitution in HIV-1 drug resistance.


1995 ◽  
Vol 6 (2) ◽  
pp. 73-79 ◽  
Author(s):  
M. Seki ◽  
Y. Sadakata ◽  
S. Yuasa ◽  
M. Baba

MKC-442, 6-benzy 1-1-ethoxymethyl-5-isopropyIuraciI (l-EBU), is a potent and selective non-nucleoside inhibitor of human immunodeficiency virus type-1 (HIV-1) reverse transcriptase (RT). Nevirapine, another non-nucleoside RT inhibitor (NNRTI), is associated with rapid emergence of drug-resistant variants during in vitro passages of HIV-1. The emergence of resistant viruses to MKC-442 or nevirapine was examined in vitro. MT-4 cells infected with a clinical isolate (HE) of HIV-1 were cultivated in medium containing excess concentrations of these drugs, and the drug susceptibilities of the breakthrough viruses recovered from the medium were measured. Although nevirapine lost its antiviral activity after six passages, a delay in the emergence of fully resistant viruses was observed for MKC-442. Two resistant clones for each drug were isolated and nucleotide sequences within the RT region were analysed. An amino acid substitution at position 181 (Tyr to Cys) was found, with additional substitutions at positions 103 (Lys to Arg) and 108 (Val to lle) in the MKC-442-resistant viruses. These clones showed various susceptibilities to MKC-442, and cross-resistance to other NNRTIs but not to AZT. These results suggest that the major binding site of MKC-442 on the HIV-1 RT is the tyrosine residue common to these NNRTIs, and that drug resistance to NNRTIs is dependent on both the quality and the quantity of mutations within the HIV-1 RT gene.


Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 495
Author(s):  
Mai Izumida ◽  
Koushirou Suga ◽  
Fumito Ishibashi ◽  
Yoshinao Kubo

In this study, we aimed to find chemicals from lower sea animals with defensive effects against human immunodeficiency virus type 1 (HIV-1). A library of marine natural products consisting of 80 compounds was screened for activity against HIV-1 infection using a luciferase-encoding HIV-1 vector. We identified five compounds that decreased luciferase activity in the vector-inoculated cells. In particular, portimine, isolated from the benthic dinoflagellate Vulcanodinium rugosum, exhibited significant anti-HIV-1 activity. Portimine inhibited viral infection with an 50% inhibitory concentration (IC50) value of 4.1 nM and had no cytotoxic effect on the host cells at concentrations less than 200 nM. Portimine also inhibited vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped HIV-1 vector infection. This result suggested that portimine mainly targeted HIV-1 Gag or Pol protein. To analyse which replication steps portimine affects, luciferase sequences were amplified by semi-quantitative PCR in total DNA. This analysis revealed that portimine inhibits HIV-1 vector infection before or at the reverse transcription step. Portimine has also been shown to have a direct effect on reverse transcriptase using an in vitro reverse transcriptase assay. Portimine efficiently inhibited HIV-1 replication and is a potent lead compound for developing novel therapeutic drugs against HIV-1-induced diseases.


2007 ◽  
Vol 51 (11) ◽  
pp. 3861-3869 ◽  
Author(s):  
Michel Ntemgwa ◽  
Mark A. Wainberg ◽  
Maureen Oliveira ◽  
Daniela Moisi ◽  
Richard Lalonde ◽  
...  

ABSTRACT Mutations in the RNase H domain of human immunodeficiency virus type 1 RT have been reported to cause resistance to zidovudine (ZDV) in vitro. However, very limited data on the in vivo relevance of these mutations in patients exist to date. This study was designed to determine the relationship between mutations in the RNase H domain and viral susceptibility to nucleoside analogues. Viruses harboring complex thymidine analogue mutation (TAM) and nucleoside analogue mutation (NAM) profiles were evaluated for their phenotypic susceptibilities to ZDV, tenofovir (TNF), and the nonapproved nucleoside reverse transcriptase inhibitors (NRTIs) β-2′,3′-didehydro-2′,3′-dideoxy-5-fluorocytidine (Reverset), β-d-5-fluorodioxolane-cytosine, and apricitabine. As controls, viruses from NRTI-naïve patients were also studied. The pol RT region (codons 21 to 250) of the viruses were sequenced and evaluated for mutations in the RNase H domain (codons 441 to 560) and the connection domain (codons 289 to 400). The results showed that viruses from patients failing multiple NRTI-containing regimens had distinct TAM and NAM profiles that conferred various degrees of resistance to ZDV (0.9- to >300-fold). Sequencing of the RNase H domain identified five positions (positions 460,468, 483, 512, and 519) at which extensive amino acid polymorphisms common in both wild-type viruses and viruses from treated patients were identified. No mutations were observed at positions 539 and 549, which have previously been associated with ZDV resistance. Mutations in the RNase H domain did not appear to correlate with the levels of phenotypic resistance to ZDV. Although some mutations were also observed in the connection domain, the simultaneous presence of the L74V and M184V mutations was the most significant determinant of phenotypic resistance to ZDV in patients infected with viruses with TAMs.


Sign in / Sign up

Export Citation Format

Share Document