scholarly journals Host RNA Polymerase Requirements for Transcription of the Human Hepatitis Delta Virus Genome

2001 ◽  
Vol 75 (21) ◽  
pp. 10161-10169 ◽  
Author(s):  
Gloria Moraleda ◽  
John Taylor

ABSTRACT Replication of the genome of hepatitis delta virus (HDV) requires RNA-directed RNA synthesis using a host polymerase(s). This manuscript reviews the relevant published evidence. It also provides two new studies, both of which made use of transiently transfected Huh7 cells undergoing HDV RNA-directed RNA synthesis. For the first study, RNA transcription inhibitors were added to the transfected cells for periods of 1 to 2 days, after which assays of the effects on the accumulation of processed unit-length genomic HDV RNA were performed. For the second study, nuclei were isolated at 6 days after transfection, and then in vitro runoff transcription was used to assay the effects of RNA transcription inhibitors. Overall, the data support the interpretation that HDV transcription does not require host polymerase I or III (pol I or III) but at least primarily involves an enzyme resembling pol II.

2000 ◽  
Vol 74 (16) ◽  
pp. 7204-7210 ◽  
Author(s):  
Severin Gudima ◽  
Shwu-Yuan Wu ◽  
Cheng-Ming Chiang ◽  
Gloria Moraleda ◽  
John Taylor

ABSTRACT Hepatitis delta virus (HDV) is unique relative to all known animal viruses, especially in terms of its ability to redirect host RNA polymerase(s) to transcribe its 1,679-nucleotide (nt) circular RNA genome. During replication there accumulates not only more molecules of the genome but also its exact complement, the antigenome. In addition, there are relatively smaller amounts of an 800-nt RNA of antigenomic polarity that is polyadenylated and considered to act as mRNA for translation of the single and essential HDV protein, the delta antigen. Characterization of this mRNA could provide insights into the in vivo mechanism of HDV RNA-directed RNA transcription and processing. Previously, we showed that the 5′ end of this RNA was located in the majority of species, at nt 1630. The present studies show that (i) at least some of this RNA, as extracted from the liver of an HDV-infected woodchuck, behaved as if it contained a 5′-cap structure; (ii) in the infected liver there were additional polyadenylated antigenomic HDV RNA species with 5′ ends located at least 202 nt and even 335 nt beyond the nt 1630 site, (iii) the 5′ end at nt 1630 was not detected in transfected cells, following DNA-directed HDV RNA transcription, in the absence of genome replication, and (iv) nevertheless, using in vitro transcription with purified human RNA polymerase II holoenzyme and genomic RNA template, we did not detect initiation of template-dependent RNA synthesis; we observed only low levels of 3′-end addition to the template. These new findings support the interpretation that the 5′ end detected at nt 1630 during HDV replication represents a specific site for the initiation of an RNA-directed RNA synthesis, which is then modified by capping.


2003 ◽  
Vol 77 (22) ◽  
pp. 11910-11917 ◽  
Author(s):  
Jinhong Chang ◽  
Patrick Provost ◽  
John M. Taylor

ABSTRACT The endonuclease dicer cleaves RNAs that are 100% double stranded and certain RNAs with extensive but <100% pairing to release ∼21-nucleotide (nt) fragments. Circular 1,679-nt genomic and antigenomic RNAs of human hepatitis delta virus (HDV) can fold into a rod-like structure with 74% pairing. However, during HDV replication in hepatocytes of human, woodchuck, and mouse origin, no ∼21-nt RNAs were detected. Likewise, in vitro, purified recombinant dicer gave <0.2% cleavage of unit-length HDV RNAs. Similarly, rod-like RNAs of potato spindle tuber viroid (PSTVd) and avocado sunblotch viroid (ASBVd) were only 0.5% cleaved. Furthermore, when a 66-nt hairpin RNA with 79% pairing, the putative precursor to miR-122, which is an abundant liver micro-RNA, replaced one end of HDV genomic RNA, it was poorly cleaved, both in vivo and in vitro. In contrast, this 66-nt hairpin, in the absence of appended HDV sequences, was >80% cleaved in vitro. Other 66-nt hairpins derived from one end of genomic HDV, PSTVd, or ASBVd RNAs were also cleaved. Apparently, for unit-length RNAs of HDV, PSTVd, and ASBVd, it is the extended structure with <100% base pairing that confers significant resistance to dicer action.


1998 ◽  
Vol 72 (6) ◽  
pp. 4783-4788 ◽  
Author(s):  
Kate Dingle ◽  
Vadim Bichko ◽  
Harmon Zuccola ◽  
James Hogle ◽  
John Taylor

ABSTRACT The small, 195-amino-acid form of the hepatitis delta virus (HDV) antigen (δAg-S) is essential for genome replication, i.e., for the transcription, processing, and accumulation of HDV RNAs. To better understand this requirement, we used purified recombinant δAg-S and HDV RNA synthesized in vitro to assemble high-molecular-weight ribonucleoprotein (RNP) structures. After transfection of these RNPs into human cells, we detected HDV genome replication, as assayed by Northern analysis or immunofluorescence microscopy. Our interpretation is that the input δAg-S is necessary for the RNA to undergo limited amounts of RNA-directed RNA synthesis, RNA processing, and mRNA formation, leading to de novo translation of δAg-S. It is this second source of δAg-S which then goes on to support genome replication. This assay made it possible to manipulate in vitro the composition of the RNP and then test in vivo the ability of the complex to initiate RNA-directed RNA synthesis and go on to achieve genome replication. For example, both genomic and antigenomic linear RNAs were acceptable. Substitution for δAg-S with truncated or modified forms of the δAg, and even with HIV nucleocapsid protein and polylysine, was unacceptable; the exception was a form of δAg-S with six histidines added at the C terminus. We expect that further in vitro modifications of these RNP complexes should help define the in vivo requirements for what we define as the initiation of HDV genome replication.


1996 ◽  
Vol 237 (3) ◽  
pp. 712-718 ◽  
Author(s):  
Fumiko Nishikawa ◽  
Junji Kawakami ◽  
Atsushi Chiba ◽  
Makoto Shirai ◽  
Penmetcha K. R. Kumar ◽  
...  

2000 ◽  
Vol 74 (16) ◽  
pp. 7375-7380 ◽  
Author(s):  
Lucy E. Modahl ◽  
Michael M. C. Lai

ABSTRACT Hepatitis delta virus (HDV) contains two types of hepatitis delta antigens (HDAg) in the virion. The small form (S-HDAg) is required for HDV RNA replication, whereas the large form (L-HDAg) potently inhibits it by a dominant-negative inhibitory mechanism. The sequential appearance of these two forms in the infected cells regulates HDV RNA synthesis during the viral life cycle. However, the presence of almost equal amounts of S-HDAg and L-HDAg in the virion raised a puzzling question concerning how HDV can escape the inhibitory effects of L-HDAg and initiate RNA replication after infection. In this study, we examined the inhibitory effects of L-HDAg on the synthesis of various HDV RNA species. Using an HDV RNA-based transfection approach devoid of any artificial DNA intermediates, we showed that a small amount of L-HDAg is sufficient to inhibit HDV genomic RNA synthesis from the antigenomic RNA template. However, the synthesis of antigenomic RNA, including both the 1.7-kb HDV RNA and the 0.8-kb HDAg mRNA, from the genomic-sense RNA was surprisingly resistant to inhibition by L-HDAg. The synthesis of these RNAs was inhibited only when L-HDAg was in vast excess over S-HDAg. These results explain why HDV genomic RNA can initiate replication after infection even though the incoming viral genome is complexed with equal amounts of L-HDAg and S-HDAg. These results also suggest that the mechanisms of synthesis of genomic versus antigenomic RNA are different. This study thus resolves a puzzling question about the early events of the HDV life cycle.


2020 ◽  
Vol 73 ◽  
pp. S834-S835
Author(s):  
Benoît Lacombe ◽  
Julie Lucifora ◽  
Camille Ménard ◽  
Michelet Maud ◽  
Adrien Foca ◽  
...  

2004 ◽  
Vol 78 (23) ◽  
pp. 13325-13334 ◽  
Author(s):  
Yi-Jia Li ◽  
Michael R. Stallcup ◽  
Michael M. C. Lai

ABSTRACT Hepatitis delta virus (HDV) contains a circular RNA which encodes a single protein, hepatitis delta antigen (HDAg). HDAg exists in two forms, a small form (S-HDAg) and a large form (L-HDAg). S-HDAg can transactivate HDV RNA replication. Recent studies have shown that posttranslational modifications, such as phosphorylation and acetylation, of S-HDAg can modulate HDV RNA replication. Here we show that S-HDAg can be methylated by protein arginine methyltransferase (PRMT1) in vitro and in vivo. The major methylation site is at arginine-13 (R13), which is in the RGGR motif of an RNA-binding domain. The methylation of S-HDAg is essential for HDV RNA replication, especially for replication of the antigenomic RNA strand to form the genomic RNA strand. An R13A mutation in S-HDAg inhibited HDV RNA replication. The presence of a methylation inhibitor, S-adenosyl-homocysteine, also inhibited HDV RNA replication. We further found that the methylation of S-HDAg affected its subcellular localization. Methylation-defective HDAg lost the ability to form a speckled structure in the nucleus and also permeated into the cytoplasm. These results thus revealed a novel posttranslational modification of HDAg and indicated its importance for HDV RNA replication. This and other results further showed that, unlike replication of the HDV genomic RNA strand, replication of the antigenomic RNA strand requires multiple types of posttranslational modification, including the phosphorylation and methylation of HDAg.


2002 ◽  
Vol 76 (8) ◽  
pp. 3819-3827 ◽  
Author(s):  
Geetha C. Jayan ◽  
John L. Casey

ABSTRACT Hepatitis delta virus (HDV) is a subviral human pathogen that uses specific RNA editing activity of the host to produce two essential forms of the sole viral protein, hepatitis delta antigen (HDAg). Editing at the amber/W site of HDV antigenomic RNA leads to the production of the longer form (HDAg-L), which is required for RNA packaging but which is a potent trans-dominant inhibitor of HDV RNA replication. Editing in infected cells is thought to be catalyzed by one or more of the cellular enzymes known as adenosine deaminases that act on RNA (ADARs). We examined the effects of increased ADAR1 and ADAR2 expression on HDV RNA editing and replication in transfected Huh7 cells. We found that both ADARs dramatically increased RNA editing, which was correlated with strong inhibition of HDV RNA replication. While increased HDAg-L production was the primary mechanism of inhibition, we observed at least two additional means by which ADARs can suppress HDV replication. High-level expression of both ADAR1 and ADAR2 led to extensive hyperediting at non-amber/W sites and subsequent production of HDAg variants that acted as trans-dominant inhibitors of HDV RNA replication. Moreover, we also observed weak inhibition of HDV RNA replication by mutated forms of ADARs defective for deaminase activity. Our results indicate that HDV requires highly regulated and selective editing and that the level of ADAR expression can play an important role: overexpression of ADARs inhibits HDV RNA replication and compromises virus viability.


2002 ◽  
Vol 76 (19) ◽  
pp. 9910-9919 ◽  
Author(s):  
Thomas B. Macnaughton ◽  
Michael M. C. Lai

ABSTRACT Moderation of hepatitis delta virus (HDV) replication is a likely prerequisite in the establishment of chronic infections and is thought to be mediated by the intracellular accumulation of large hepatitis delta antigen (L-HDAg). The regulatory role of this protein was suggested from several studies showing that cotransfection of plasmid cDNAs expressing both L-HDAg and HDV RNA results in a potent inhibition of HDV RNA replication. However, since this approach differs significantly from natural HDV infections, where HDV RNA replication is initiated from an RNA template, and L-HDAg appears only late in the replication cycle, it remains unclear whether L-HDAg can modulate HDV RNA replication in the natural HDV replication cycle. In this study, we investigated the effect of L-HDAg, produced as a result of the natural HDV RNA editing event, on HDV RNA replication. The results showed that following cDNA-free HDV RNA transfection, a steady-state level of RNA was established at 3 to 4 days posttransfection. The same level of HDV RNA was reached when a mutant HDV genome unable to make L-HDAg was used, suggesting that L-HDAg did not play a role. The rates of HDV RNA synthesis, as measured by metabolic labeling experiments, were identical at 4 and 8 days posttransfection and in the wild type and the L-HDAg-deficient mutant. We further examined the effect of overexpression of L-HDAg at various stages of the HDV replication cycle, showing that HDV RNA synthesis was resistant to L-HDAg when it was overexpressed 3 days after HDV RNA replication had initiated. Finally, we showed that, contrary to conventional thinking, L-HDAg alone, at a certain molar ratio with HDV RNA, can initiate HDV RNA replication. Thus, L-HDAg does not inherently inhibit HDV RNA synthesis. Taken together, these results indicated that L-HDAg affects neither the rate of HDV RNA synthesis nor the final steady-state level of HDV RNA and that L-HDAg is unlikely to act as an inhibitor of HDV RNA replication in the natural HDV replication cycle.


Sign in / Sign up

Export Citation Format

Share Document