hepatitis delta antigen
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 5)

H-INDEX

28
(FIVE YEARS 2)

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2371
Author(s):  
Florian A. Lempp ◽  
Imme Roggenbach ◽  
Shirin Nkongolo ◽  
Volkan Sakin ◽  
Franziska Schlund ◽  
...  

Hepatitis Delta virus (HDV) is a satellite of the Hepatitis B virus (HBV) and causes severe liver disease. The estimated prevalence of 15–20 million infected people worldwide may be underestimated as international diagnostic guidelines are not routinely followed. Possible reasons for this include the limited awareness among healthcare providers, the requirement for costly equipment and specialized training, and a lack of access to reliable tests in regions with poor medical infrastructure. In this study, we developed an HDV rapid test for the detection of antibodies against the hepatitis delta antigen (anti-HDV) in serum and plasma. The test is based on a novel recombinant large hepatitis delta antigen that can detect anti-HDV in a concentration-dependent manner with pan-genotypic activity across all known HDV genotypes. We evaluated the performance of this test on a cohort of 474 patient samples and found that it has a sensitivity of 94.6% (314/332) and a specificity of 100% (142/142) when compared to a diagnostic gold-standard ELISA. It also works robustly for a broad range of anti-HDV titers. We anticipate this novel HDV rapid test to be an important tool for epidemiological studies and clinical diagnostics, especially in regions that currently lack access to reliable HDV testing.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1799
Author(s):  
Imme Roggenbach ◽  
Xiumei Chi ◽  
Florian A. Lempp ◽  
Bingqian Qu ◽  
Lisa Walter ◽  
...  

HDV infection causes severe liver disease, the global health burden of which may be underestimated due to limited epidemiological data. HDV depends on HBV for infection, but recent studies indicated that dissemination can also be supported by other helper viruses such as HCV. We used a rapid point-of-care test and an ELISA to retrospectively test for antibodies against the Hepatitis Delta antigen (anti-HDV-Ab) in 4103 HBsAg-positive and 1661 HBsAg-negative, anti-HCV-positive sera from China and Germany. We found that the HDV seroprevalence in HBsAg-positive patients in China is limited to geographic hotspots (Inner Mongolia: 35/251, 13.9%; Xinjiang: 7/180, 3.9%) and high-risk intravenous drug users (HBV mono-infected: 23/247, 9.3%; HBV-HCV co-infected: 34/107, 31.8%), while none of the 2634 HBsAg carriers from other metropolitan regions were anti-HDV-Ab-positive. In Germany, we recorded an HDV seroprevalence of 5.3% in a university hospital environment. In a cohort of HBsAg-negative, anti-HCV-positive patients that were not exposed to HBV before (anti-HBc-negative), HDV was not associated with HCV mono-infection (Chinese high-risk cohort: 0/365, 0.0%; German mixed cohort: 0/263, 0.0%). However, 21/1033 (2.0%) high-risk HCV patients in China with markers of a previously cleared HBV infection (anti-HBc-positive) were positive for anti-HDV-Ab, with two of them being positive for both HDV and HCV RNA but negative for HBV DNA. The absence of anti-HDV-Ab in HCV mono-infected patients shows that HCV cannot promote HDV transmission in humans.


2019 ◽  
Vol 97 (2) ◽  
pp. 130-139 ◽  
Author(s):  
Mianzhi Chen ◽  
Dan Du ◽  
Wen Zheng ◽  
Mingheng Liao ◽  
Lu Zhang ◽  
...  

Liver coinfection by hepatitis B virus (HBV) and hepatitis D virus (HDV) can result in a severe form of hepatocellular carcinoma with poor prognosis. Coinfection with HDV and HBV causes more deleterious effects than infection with HBV alone. Clinical research has shown that glutathione S-transferase P1 (GSTP1), a tumor suppressor gene, is typically downregulated in liver samples from hepatitis-infected patients. In the present study, our data indicated that small HDV antigen (s-HDAg) could specifically bind to GSTP1 mRNA and significantly downregulate GSTP1 protein expression. For the human fetal hepatocyte cell line L-02, cells transfected with s-HDAg, along with decreased GSTP1 expression, there was a significant accumulation of reactive oxygen species (ROS) and increased apoptotic ratios. Restoring GSTP1 expression through silencing s-HDAg via RNAi or overexpressing exogenous GSTP1 could largely recover the abnormal cell status. Our results revealed a novel potential mechanism of HDV-induced liver injury and hepatocarcinogenesis: s-HDAg can inhibit GSTP1 expression by directly binding to GSTP1 mRNA, which leads to accumulation of cellular ROS, resulting in high cellular apoptotic ratios and increased selective pressure for malignant transformation. To our knowledge, this is the first study to examine s-HDAg-specific pathogenic mechanisms through potential protein–RNA interactions.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Kaneemozhe Harichandran ◽  
Yiran Shen ◽  
Susannah Stephenson Tsoris ◽  
See-Chi Lee ◽  
John L. Casey

ABSTRACTHepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of acute and chronic liver disease. HDV produces three processed RNAs that accumulate in infected cells: the circular genome; the circular antigenome, which serves as a replication intermediate; and lesser amounts of the mRNA, which encodes the sole viral protein, hepatitis delta antigen (HDAg). The HDV genome and antigenome RNAs form ribonucleoprotein complexes with HDAg. Although HDAg is required for HDV replication, it is not known how the relative amounts of HDAg and HDV RNA affect replication, or whether HDAg synthesis is regulated by the virus. Using a novel transfection system in which HDV replication is initiated usingin vitro-synthesized circular HDV RNAs, HDV replication was found to depend strongly on the relative amounts of HDV RNA and HDAg. HDV controls these relative amounts via differential effects of HDAg on the production of HDV mRNA and antigenome RNA, both of which are synthesized from the genome RNA template. mRNA synthesis is favored at low HDAg levels but becomes saturated at high HDAg concentrations. Antigenome RNA accumulation increases linearly with HDAg and dominates at high HDAg levels. These results provide a conceptual model for how HDV antigenome RNA production and mRNA transcription are controlled from the earliest stage of infection onward and also demonstrate that, in this control, HDV behaves similarly to other negative-strand RNA viruses, even though there is no genetic similarity between them.IMPORTANCEHepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of liver disease; approximately 15 million people are chronically infected worldwide. There are no licensed therapies available. HDV is not related to any known virus, and few details regarding its replication cycle are known. One key question is whether and how HDV regulates the relative amounts of viral RNA and protein in infected cells. Such regulation might be important because the HDV RNA and protein form complexes that are essential for HDV replication, and the proper stoichiometry of these complexes could be critical for their function. Our results show that the relative amounts of HDV RNA and protein in cells are indeed important for HDV replication and that the virus does control them. These observations indicate that further study of these regulatory mechanisms is required to better understand replication of this serious human pathogen.


2017 ◽  
Vol 66 (1) ◽  
pp. S250-S251
Author(s):  
L. Colagrossi ◽  
R. Salpini ◽  
R. Scutari ◽  
A. Battisti ◽  
L. Piermatteo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document