scholarly journals In Vitro and In Vivo Infectivity and Pathogenicity of the Lymphoid Cell-Derived Woodchuck Hepatitis Virus

2001 ◽  
Vol 75 (4) ◽  
pp. 1770-1782 ◽  
Author(s):  
Yuan-Yee Lew ◽  
Tomasz I. Michalak

ABSTRACT Woodchuck hepatitis virus (WHV) and human hepatitis B virus are closely related, highly hepatotropic mammalian DNA viruses that also replicate in the lymphatic system. The infectivity and pathogenicity of hepadnaviruses propagating in lymphoid cells are under debate. In this study, hepato- and lymphotropism of WHV produced by naturally infected lymphoid cells was examined in specifically established woodchuck hepatocyte and lymphoid cell cultures and coculture systems, and virus pathogenicity was tested in susceptible animals. Applying PCR-based assays discriminating between the total pool of WHV genomes and covalently closed circular DNA (cccDNA), combined with enzymatic elimination of extracellular viral sequences potentially associated with the cell surface, our study documents that virus replicating in woodchuck lymphoid cells is infectious to homologous hepatocytes and lymphoid cells in vitro. The productive replication of WHV from lymphoid cells in cultured hepatocytes was evidenced by the appearance of virus-specific DNA, cccDNA, and antigens, transmissibility of the virus through multiple passages in hepatocyte cultures, and the ability of the passaged virus to infect virus-naive animals. The data also revealed that WHV from lymphoid cells can initiate classical acute viral hepatitis in susceptible animals, albeit small quantities (∼103 virions) caused immunovirologically undetectable (occult) WHV infection that engaged the lymphatic system but not the liver. Our results provide direct in vitro and in vivo evidence that lymphoid cells in the infected host support propagation of infectious hepadnavirus that has the potential to induce hepatitis. They also emphasize a principal role of the lymphatic system in the maintenance and dissemination of hepadnavirus infection, particularly when infection is induced by low virus doses.

1997 ◽  
Vol 41 (10) ◽  
pp. 2076-2082 ◽  
Author(s):  
J M Cullen ◽  
S L Smith ◽  
M G Davis ◽  
S E Dunn ◽  
C Botteron ◽  
...  

The (-) enantiomer of cis-5-fluoro-1l-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine [(-)-FTC)], a substituted oxathiolane compound with anti-hepatitis B virus activity in vitro, was assessed for its efficacy in woodchucks with naturally acquired woodchuck hepatitis virus (WHV) infection. Pharmacokinetics and in vitro anabolism were also determined. (-)-FTC was anabolized to the 5'-triphosphate in a dose-related fashion, reaching a maximum concentration at about 24 h in cultured woodchuck hepatocytes. Following administration of a dose of 10 mg/kg of body weight intraperitoneally (i.p.), the clearance of (-)-FTC from plasma was monoexponential, the terminal half-life was 3.76 +/- 1.4 h, and the systemic clearance was 0.12 +/- 0.06 liters/h/kg. The antiviral efficacy of (-)-FTC in the woodchuck model was assessed by quantitation of serum WHV DNA levels and by WHV particle-associated DNA polymerase activity at two dosages, 30 and 20 mg/kg given i.p. twice daily (b.i.d.), respectively. The level of WHV DNA in serum was reduced 20- to 150-fold (average, 56-fold) in the 30-mg/kg-b.i.d. treatment group and 6- to 49-fold (average, 27-fold) in the 20-mg/kg-b.i.d. treatment group. Viral DNA polymerase levels diminished accordingly. One week after treatment was discontinued, WHV levels returned to pretreatment levels in both studies. These animals were biopsied before and following treatment with 30 mg of (-)-FTC per kg. Their livers were characterized by a mild increase in cytoplasmic lipid levels, but this change was not associated with altered liver enzyme levels. Serum chemistry and hematology results were within the normal ranges for all treated animals. We conclude that (-)-FTC is a potent antihepadnaviral agent and that it has no detectable toxic effects in woodchucks when given for up to 25 days. Further development of (-)-FTC as an anti-hepatitis B virus therapy for patients is warranted.


1992 ◽  
Vol 12 (4) ◽  
pp. 1736-1746
Author(s):  
K Nakayama ◽  
H Shimizu ◽  
K Mitomo ◽  
T Watanabe ◽  
S Okamoto ◽  
...  

The proto-oncoprotein c-Rel is a member of the nuclear factor kappa B transcription factor family, which includes the p50 and p65 subunits of nuclear factor kappa B. We show here that c-Rel binds to kappa B sites as homodimers as well as heterodimers with p50. These homodimers and heterodimers show distinct DNA-binding specificities and affinities for various kappa B motifs. In particular, the c-Rel homodimer has a high affinity for interleukin-6 (IL-6) and beta interferon kappa B sites. In spite of its association with p50 in vitro, however, we found a lymphoid cell-specific nuclear factor in vivo that contains c-Rel but not p50 epitopes; this factor, termed IL-6 kappa B binding factor II, appears to contain the c-Rel homodimer and preferentially recognizes several IL-6 kappa B-related kappa B motifs. Although it has been previously shown that the IL-6 kappa B motif functions as a potent IL-1/tumor necrosis factor-responsive element in nonlymphoid cells, its activity was found to be repressed in lymphoid cells such as a Jurkat T-cell line. We also present evidence that IL-6 kappa B binding factor II functions as a repressor specific for IL-6 kappa B-related kappa B motifs in lymphoid cells.


1976 ◽  
Vol 144 (2) ◽  
pp. 371-381 ◽  
Author(s):  
C W Pierce ◽  
J A Kapp ◽  
B Benacerraf

The ability of antigen-bearing syngeneic and allogeneic peptone-induced peritoneal exudate macrophages to support development of primary and secondary antibody responses by murine lymphoid or spleen cells in vitro has been investigated. The antigen used was the terpolymer of L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). Syngeneic and allogeneic macrophages supported development of comparable primary antibody responses to GAT, indicating that genetic restrictions do not limit efficient macrophage-lymphocyte interactions in primary responses. By contrast, immunized spleen or lymphoid cells developed secondary antibody responses preferentially when stimulated in vitro with GAT on macrophages syngeneic to the macrophages used to present GAT during in vivo immunization. Thus, genetic restrictions regulate efficient macrophage-lymphocyte interactions in secondary antibody responses. These restrictions have been demonstrated from 2 to 8 wk after a single immunization with limiting quantities of GAT and are controlled by the H-2 gene complex. The implications that immune lymphocytes selectively recognize and respond to antigen presented in the context of the macrophage membrane-antigen complex which sensitized the lymphocytes initially are considered.


1992 ◽  
Vol 12 (4) ◽  
pp. 1736-1746 ◽  
Author(s):  
K Nakayama ◽  
H Shimizu ◽  
K Mitomo ◽  
T Watanabe ◽  
S Okamoto ◽  
...  

The proto-oncoprotein c-Rel is a member of the nuclear factor kappa B transcription factor family, which includes the p50 and p65 subunits of nuclear factor kappa B. We show here that c-Rel binds to kappa B sites as homodimers as well as heterodimers with p50. These homodimers and heterodimers show distinct DNA-binding specificities and affinities for various kappa B motifs. In particular, the c-Rel homodimer has a high affinity for interleukin-6 (IL-6) and beta interferon kappa B sites. In spite of its association with p50 in vitro, however, we found a lymphoid cell-specific nuclear factor in vivo that contains c-Rel but not p50 epitopes; this factor, termed IL-6 kappa B binding factor II, appears to contain the c-Rel homodimer and preferentially recognizes several IL-6 kappa B-related kappa B motifs. Although it has been previously shown that the IL-6 kappa B motif functions as a potent IL-1/tumor necrosis factor-responsive element in nonlymphoid cells, its activity was found to be repressed in lymphoid cells such as a Jurkat T-cell line. We also present evidence that IL-6 kappa B binding factor II functions as a repressor specific for IL-6 kappa B-related kappa B motifs in lymphoid cells.


2004 ◽  
Vol 78 (4) ◽  
pp. 1730-1738 ◽  
Author(s):  
Tomasz I. Michalak ◽  
Patricia M. Mulrooney ◽  
Carla S. Coffin

ABSTRACT Woodchuck hepatitis virus (WHV), which is closely related to human hepatitis B virus and is considered to be principally hepatotropic, invades the host's lymphatic system and persists in lymphoid cells independently of whether the infection is symptomatic and serologically evident or concealed. In this study, we show, with the woodchuck model of hepatitis B, that hepadnavirus can establish an infection that engages the lymphatic system, but not the liver, and persists in the absence of virus serological markers, including antiviral antibodies. This primary occult infection is caused by wild-type virus invading the host at a quantity usually not greater than 103 virions. It is characterized by trace virus replication progressing in lymphatic organs and peripheral lymphoid cells that, with time, may also spread to the liver. The infection is transmissible to virus-naive hosts as an asymptomatic, indefinitely long, occult carriage of small amounts of biologically competent virus. In contrast to residual silent WHV persistence, which normally endures after the resolution of viral hepatitis and involves the liver, primary occult infection restricted to the lymphatic system does not protect against reinfection with a large, liver-pathogenic WHV dose; however, the occult infection is associated with a swift recovery from hepatitis caused by the superinfection. Our study documents that the lymphatic system is the primary target of WHV infection when small quantities of virions invade a susceptible host.


2004 ◽  
Vol 78 (18) ◽  
pp. 10111-10121 ◽  
Author(s):  
Melanie Fiedler ◽  
Florian Rödicker ◽  
Valentina Salucci ◽  
Mengji Lu ◽  
Luigi Aurisicchio ◽  
...  

ABSTRACT Alpha interferon (IFN-α) and IFN-γ are able to suppress hepadnavirus replication. The intrahepatic expression of high levels of IFN may enhance the antiviral activity. We investigated the effects of woodchuck-specific IFN-α (wIFN-α) and IFN-γ(wIFN-γ) on woodchuck hepatitis virus (WHV) replication in vivo by helper-dependent adenoviral (HD-Ad) vector-mediated gene transfer. The expression of biologically active IFNs was demonstrated in vitro after transduction of woodchuck cells with HD-Ad vectors encoding wIFN-α (HD-AdwIFN-α) or wIFN-γ (HD-AdwIFN-γ). The transduction efficacy of the HD-Ad vector in woodchuck liver in vivo was tested with a vector expressing green fluorescence protein (GFP). Immunohistochemical staining of liver samples on day 5 after injection showed expression of GFP in a high percentage of liver cells surrounding the central vein. The transduction of livers of WHV carriers in vivo with HD-AdwIFN-α or HD-AdwIFN-γ induced levels of biologically active IFN, which could be measured in the sera of these animals. Expression of wIFN-α in the liver reduced intrahepatic WHV replication and WHV DNA in sera of about 1 log step in two of two woodchucks. Transduction with HD-AdwIFN-γ, however, reduced WHV replicative intermediates only slightly in two of three animals, which was not accompanied with significant changes in the WHV DNA in sera. We demonstrated for the first time the successful HD-Ad vector-mediated transfer of genes for IFN-α and IFN-γ in vivo and timely limited reduction of WHV replication by wIFN-α, but not by wIFN-γ.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 620-626
Author(s):  
RW Schroff ◽  
MM Farrell ◽  
RA Klein ◽  
HC Stevenson ◽  
NL Warner

We have previously reported that the addition of monocytes results in enhanced modulation of the T65 antigen when normal or leukemic lymphoid cells were cultured in vitro with the T101 monoclonal antibody. In the present investigation, we extend these findings to demonstrate that monocyte-enhanced modulation is a phenomenon that occurs with a variety of T and B lymphoid antigens identified by murine monoclonal antibodies. Two patterns of monocyte-enhanced modulation were observed: (1) augmentation by monocytes of existing antigen modulation by the T101 and anti-Leu-4 antibodies, and (2) induction by monocytes of previously unrecognized modulation with the anti-Leu-2 and anti-Leu-9 antibodies. Enhancement of modulation by monocytes was also detected with antibodies to surface IgM and HLA-DR antigens. Antigen modulation on lymphoid cell lines appeared to be more variable than on fresh cells, with or without monocytes. Monocyte-enhanced antigen modulation was not demonstrated with two monoclonal antibodies against solid tumors. Monocyte-enhanced modulation was shown to be dependent upon the Fc portion of the antibody, but independent of proteolytic or oxidative compounds released by monocytes. These findings indicate that the results obtained during in vitro studies of antigen modulation may vary with the source of cells and the extent to which monocytic cells are present. In addition, these findings suggest an enhanced role for Fc receptor-bearing cells of monocytic origin in antigen modulation following in vivo administration of monoclonal antibodies.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 620-626 ◽  
Author(s):  
RW Schroff ◽  
MM Farrell ◽  
RA Klein ◽  
HC Stevenson ◽  
NL Warner

Abstract We have previously reported that the addition of monocytes results in enhanced modulation of the T65 antigen when normal or leukemic lymphoid cells were cultured in vitro with the T101 monoclonal antibody. In the present investigation, we extend these findings to demonstrate that monocyte-enhanced modulation is a phenomenon that occurs with a variety of T and B lymphoid antigens identified by murine monoclonal antibodies. Two patterns of monocyte-enhanced modulation were observed: (1) augmentation by monocytes of existing antigen modulation by the T101 and anti-Leu-4 antibodies, and (2) induction by monocytes of previously unrecognized modulation with the anti-Leu-2 and anti-Leu-9 antibodies. Enhancement of modulation by monocytes was also detected with antibodies to surface IgM and HLA-DR antigens. Antigen modulation on lymphoid cell lines appeared to be more variable than on fresh cells, with or without monocytes. Monocyte-enhanced antigen modulation was not demonstrated with two monoclonal antibodies against solid tumors. Monocyte-enhanced modulation was shown to be dependent upon the Fc portion of the antibody, but independent of proteolytic or oxidative compounds released by monocytes. These findings indicate that the results obtained during in vitro studies of antigen modulation may vary with the source of cells and the extent to which monocytic cells are present. In addition, these findings suggest an enhanced role for Fc receptor-bearing cells of monocytic origin in antigen modulation following in vivo administration of monoclonal antibodies.


1998 ◽  
Vol 42 (12) ◽  
pp. 3200-3208 ◽  
Author(s):  
Maria Seifer ◽  
Robert K. Hamatake ◽  
Richard J. Colonno ◽  
David N. Standring

ABSTRACT The guanosine analogs BMS-200475 and lobucavir have previously been shown to effectively suppress propagation of the human hepatitis B virus (HBV) and woodchuck hepatitis virus (WHV) in 2.2.15 liver cells and in the woodchuck animal model system, respectively. This repression was presumed to occur via inhibition of the viral polymerase (Pol) by the triphosphate (TP) forms of BMS-200475 and lobucavir which are both produced in mammalian cells. To determine the exact mode of action, BMS-200475–TP and lobucavir-TP, along with several other guanosine analog-TPs and lamivudine-TP were tested against the HBV, WHV, and duck hepatitis B virus (DHBV) polymerases in vitro. Estimates of the 50% inhibitory concentrations revealed that BMS-200475–TP and lobucavir-TP inhibited HBV, WHV, and DHBV Pol comparably and were superior to the other nucleoside-TPs tested. More importantly, both analogs blocked the three distinct phases of hepadnaviral replication: priming, reverse transcription, and DNA-dependent DNA synthesis. These data suggest that the modest potency of lobucavir in 2.2.15 cells may be the result of poor phosphorylation in vivo. Kinetic studies revealed that BMS-200475–TP and lobucavir-TP competitively inhibit HBV Pol and WHV Pol with respect to the natural dGTP substrate and that both drugs appear to bind to Pol with very high affinities. Endogenous sequencing reactions conducted in replicative HBV nucleocapsids suggested that BMS-200475–TP and lobucavir-TP are nonobligate chain terminators that stall Pol at sites that are distinct yet characteristically two to three residues downstream from dG incorporation sites.


Sign in / Sign up

Export Citation Format

Share Document