scholarly journals Physical Interaction between Envelope Glycoproteins E and M of Pseudorabies Virus and the Major Tegument Protein UL49

2002 ◽  
Vol 76 (16) ◽  
pp. 8208-8217 ◽  
Author(s):  
Walter Fuchs ◽  
Barbara G. Klupp ◽  
Harald Granzow ◽  
Christoph Hengartner ◽  
Alexandra Brack ◽  
...  

ABSTRACT Envelope glycoprotein M (gM) and the complex formed by glycoproteins E (gE) and I (gI) are involved in the secondary envelopment of pseudorabies virus (PrV) particles in the cytoplasm of infected cells. In the absence of the gE-gI complex and gM, envelopment is blocked and capsids surrounded by tegument proteins accumulate in the cytoplasm (A. R. Brack, J. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 73:5364-5372, 1999). Here we demonstrate by yeast two-hybrid analyses that the cytoplasmic domains of gE and gM specifically interact with the C-terminal part of the UL49 gene product of PrV, which represents a major tegument protein and which is homologous to VP22 of herpes simplex virus type 1. However, deletion of the UL49 gene from PrV had only minor effects on viral replication, and ultrastructural analyses of infected cells confirmed that virus maturation and egress, including secondary envelopment in the cytoplasm, were not detectably affected by the absence of UL49. Moreover, the UL49 gene product was shown to be dispensable for virion localization of gE and gM, and mutants lacking either gE or gM incorporated the UL49 protein efficiently into virus particles. In contrast, a PrV mutant with deletions of gE-gI and gM failed to incorporate the UL49 protein despite apparently unaltered intracytoplasmic UL49 expression. In summary, we describe specific interactions between herpesvirus envelope and tegument proteins which may play a role in secondary envelopment during herpesvirus virion maturation.

2006 ◽  
Vol 80 (5) ◽  
pp. 2582-2584 ◽  
Author(s):  
Raquel Naldinho-Souto ◽  
Helena Browne ◽  
Tony Minson

ABSTRACT Immunogold electron microscopy was used to determine whether the tegument proteins VP13/14, VP22, and VP16 of herpes simplex virus type 1 (HSV1) are components of primary enveloped virions. Whereas VP13/14 and VP22 were not detected in virus particles in the perinuclear space and were present in only mature extracellular virions, VP16 was acquired prior to primary envelopment of the virus at the inner nuclear membrane. This finding highlights potential similarities and differences between HSV1 and the related alphaherpesvirus, pseudorabies virus, in which the homologues of all three of these tegument proteins are not incorporated into the virion until secondary envelopment.


2000 ◽  
Vol 74 (21) ◽  
pp. 10063-10073 ◽  
Author(s):  
Barbara G. Klupp ◽  
Harald Granzow ◽  
Thomas C. Mettenleiter

ABSTRACT Primary envelopment of several herpesviruses has been shown to occur by budding of intranuclear capsids through the inner nuclear membrane. By subsequent fusion of the primary envelope with the outer nuclear membrane, capsids are released into the cytoplasm and gain their final envelope by budding into vesicles in thetrans-Golgi area. We show here that the product of the UL34 gene of pseudorabies virus, an alphaherpesvirus of swine, is localized in transfected and infected cells in the nuclear membrane. It is also detected in the envelope of virions in the perinuclear space but is undetectable in intracytoplasmic and extracellular enveloped virus particles. Conversely, the tegument protein UL49 is present in mature virus particles and absent from perinuclear virions. In the absence of the UL34 protein, acquisition of the primary envelope is blocked and neither virus particles in the perinuclear space nor intracytoplasmic capsids or virions are observed. However, light particles which label with the anti-UL49 serum are formed in the cytoplasm. We conclude that the UL34 protein is required for primary envelopment, that the primary envelope is biochemically different from the final envelope in that it contains the UL34 protein, and that perinuclear virions lack the tegument protein UL49, which is present in mature virions. Thus, we provide additional evidence for a two-step envelopment process in herpesviruses.


2006 ◽  
Vol 80 (19) ◽  
pp. 9910-9915 ◽  
Author(s):  
Sindy Böttcher ◽  
Barbara G. Klupp ◽  
Harald Granzow ◽  
Walter Fuchs ◽  
Kathrin Michael ◽  
...  

ABSTRACT Tegument proteins homologous to the essential herpes simplex virus type 1 UL36 gene product (p)UL36 are conserved throughout the Herpesviridae and constitute the largest herpesvirus-encoded proteins. So far, only limited information is available on their functions, which include complex formation with the (p)UL37 homologs via an N-terminal domain and a deubiquitinating activity in the extreme N terminus. For further analysis we constructed deletion mutants lacking 437, 784, 926, 1,046, 1,217, or 1,557 amino acids (aa) from the C terminus. While none of them supported replication of a pseudorabies virus (PrV) UL36 deletion mutant, a mutant polypeptide with an internal deletion from aa 2087 to 2795, which comprises a proline/alanine-rich region, fully complemented the lethal replication defect. Thus, our data indicate that the extreme C terminus of (p)UL36 fulfills an essential role in PrV replication, while a large internal portion of the C-terminal half of the protein is dispensable for replication in cell culture.


2001 ◽  
Vol 75 (21) ◽  
pp. 10259-10271 ◽  
Author(s):  
Prashant Desai ◽  
Gerry L. Sexton ◽  
J. Michael McCaffery ◽  
Stanley Person

ABSTRACT The tegument is an integral and essential structural component of the herpes simplex virus type 1 (HSV-1) virion. The UL37 open reading frame of HSV-1 encodes a 120-kDa virion polypeptide which is a resident of the tegument. To analyze the function of the UL37-encoded polypeptide a null mutation was generated in the gene encoding this protein. In order to propagate this mutant virus, transformed cell lines that express the UL37 gene product in trans were produced. The null mutation was transferred into the virus genome using these complementing cell lines. A mutant virus designated KΔUL37 was isolated based on its ability to form plaques on the complementing cell line but not on nonpermissive (noncomplementing) Vero cells. This virus was unable to grow in Vero cells; therefore, UL37 encodes an essential function of the virus. The mutant virus KΔUL37 produced capsids containing DNA as judged by sedimentation analysis of extracts derived from infected Vero cells. Therefore, the UL37 gene product is not required for DNA cleavage or packaging. The UL37 mutant capsids were tagged with the smallest capsid protein, VP26, fused to green fluorescent protein. This fusion protein decorates the capsid shell and consequently the location of the capsid and the virus particle can be visualized in living cells. Late in infection, KΔUL37 capsids were observed to accumulate at the periphery of the nucleus as judged by the concentration of fluorescence around this organelle. Fluorescence was also observed in the cytoplasm in large puncta. Fluorescence at the plasma membrane, which indicated maturation and egress of virions, was observed in wild-type-infected cells but was absent in KΔUL37-infected cells. Ultrastructural analysis of thin sections of infected cells revealed clusters of DNA-containing capsids in the proximity of the inner nuclear membrane. Occasionally enveloped capsids were observed between the inner and outer nuclear membranes. Clusters of unenveloped capsids were also observed in the cytoplasm of KΔUL37-infected cells. Enveloped virions, which were observed in the cytoplasm of wild-type-infected cells, were never detected in the cytoplasm of KΔUL37-infected cells. Crude cell fractionation of infected cells using detergent lysis demonstrated that two-thirds of the UL37 mutant particles were associated with the nuclear fraction, unlike wild-type particles, which were predominantly in the cytoplasmic fraction. These data suggest that in the absence of UL37, the exit of capsids from the nucleus is slowed. UL37 mutant particles can participate in the initial envelopment at the nuclear membrane, although this process may be impaired in the absence of UL37. Furthermore, the naked capsids deposited in the cytoplasm are unable to progress further in the morphogenesis pathway, which suggests that UL37 is also required for egress and reenvelopment. Therefore, the UL37 gene product plays a key role in the early stages of the maturation pathway that give rise to an infectious virion.


2002 ◽  
Vol 76 (6) ◽  
pp. 3065-3071 ◽  
Author(s):  
Barbara G. Klupp ◽  
Walter Fuchs ◽  
Harald Granzow ◽  
Ralf Nixdorf ◽  
Thomas C. Mettenleiter

ABSTRACT The UL36 open reading frame encoding the tegument protein ICP1/2 represents the largest open reading frame in the genome of herpes simplex virus type 1 (HSV-1). Polypeptides homologous to the HSV-1 UL36 protein are present in all subfamilies of Herpesviridae. We sequenced the UL36 gene of the alphaherpesvirus pseudorabies virus (PrV) and prepared a monospecific polyclonal rabbit antiserum against a bacterial glutathione S-transferase (GST)-UL36 fusion protein for identification of the protein. The antiserum detected a >300-kDa protein in PrV-infected cells and in purified virions. Interestingly, in coprecipitation analyses using radiolabeled infected-cell extracts, the anti-UL36 serum reproducibly coprecipitated the UL37 tegument protein, and antiserum directed against the UL37 protein coprecipitated the UL36 protein. This physical interaction could be verified using yeast two-hybrid analysis which demonstrated that the UL37 protein interacts with a defined region within the amino-terminal part of the UL36 protein. By use of immunogold labeling, capsids which accumulate in the cytoplasm in the absence of the UL37 protein (B. G. Klupp, H. Granzow, E. Mundt, and T. C. Mettenleiter, J. Virol. 75:8927-8936, 2001) as well as wild-type intracytoplasmic and extracellular virions were decorated by the anti-UL36 antiserum, whereas perinuclear primary enveloped virions were not. We postulate that the physical interaction of the UL36 protein, which presumably constitutes the innermost layer of the tegument (Z. Zhou, D. Chen, J. Jakana, F. J. Rixon, and W. Chiu, J. Virol. 73:3210-3218, 1999), with the UL37 protein is an important early step in tegumentation during virion morphogenesis in the cytoplasm.


2005 ◽  
Vol 79 (8) ◽  
pp. 4730-4743 ◽  
Author(s):  
Jamie C. Yedowitz ◽  
Anna Kotsakis ◽  
Elisabeth F. M. Schlegel ◽  
John A. Blaho

ABSTRACT Herpes simplex virus type 1 (HSV-1) induces microtubule reorganization beginning at approximately 9 h postinfection (hpi), and this correlates with the nuclear localization of the tegument protein VP22. Thus, the active retention of this major virion component by cytoskeletal structures may function to regulate its subcellular localization (A. Kotsakis, L. E. Pomeranz, A. Blouin, and J. A. Blaho, J. Virol. 75:8697-8711, 2001). The goal of this study was to determine whether the subcellular localization patterns of other HSV-1 tegument proteins are similar to that observed with VP22. To address this, we performed a series of indirect immunofluorescence analyses using synchronously infected cells. We observed that tegument proteins VP13/14, vhs, and VP16 localized to the nucleus as early as 5 hpi and were concentrated in nuclei by 9 hpi, which differed from that seen with VP22. Microtubule reorganization was delayed during infection with HSV-1(RF177), a recombinant virus that does not produce full-length VP22. These infected cells did not begin to lose microtubule-organizing centers until 13 hpi. Repair of the unique long 49 (UL49) locus in HSV-1(RF177) yielded HSV-1(RF177R). Microtubule reorganization in HSV-1(RF177R)-infected cells occurred with the same kinetics as HSV-1(F). Acetylated tubulin remained unchanged during infection with either HSV-1(F) or HSV-1(RF177). Thus, while α-tubulin reorganized during infection, acetylated tubulin was stable, and the absence of full-length VP22 did not affect this stability. Our findings indicate that the nuclear localizations of tegument proteins VP13/14, VP16, and vhs do not appear to require HSV-1-induced microtubule reorganization. We conclude that full-length VP22 is needed for optimal microtubule reorganization during infection. This implies that VP22 mainly functions to reorganize microtubules later, rather than earlier, in infection. That acetylated tubulin does not undergo restructuring during VP22-dependent, virus-induced microtubule reorganization suggests that it plays a role in stabilizing the infected cells. Our results emphasize that VP22 likely plays a key role in cellular cytopathology during HSV-1 infection.


2002 ◽  
Vol 76 (13) ◽  
pp. 6729-6742 ◽  
Author(s):  
Walter Fuchs ◽  
Harald Granzow ◽  
Barbara G. Klupp ◽  
Martina Kopp ◽  
Thomas C. Mettenleiter

ABSTRACT The pseudorabies virus (PrV) homolog of the tegument protein encoded by the UL48 gene of herpes simplex virus type 1 (HSV-1) was identified by using a monospecific rabbit antiserum against a bacterial fusion protein. UL48-related polypeptides of 53, 55, and 57 kDa were detected in Western blots of infected cells and purified virions. Immunofluorescence studies demonstrated that the PrV UL48 protein is predominantly localized in the cytoplasm but is also found in the nuclei of infected cells. Moreover, it is a constituent of extracellular virus particles but is absent from primary enveloped perinuclear virions. In noncomplementing cells, a UL48-negative PrV mutant (PrV-ΔUL48) exhibited delayed growth and significantly reduced plaque sizes and virus titers, deficiencies which were corrected in UL48-expressing cells. RNA analyses indicated that, like its HSV-1 homolog, the PrV UL48 protein is involved in regulation of immediate-early gene expression. However, the most salient effect of the UL48 gene deletion was a severe defect in virion morphogenesis. Late after infection, electron microscopy of cells infected with PrV-ΔUL48 revealed retention of newly formed nucleocapsids in the cytoplasm, whereas enveloped intracytoplasmic or extracellular complete virions were only rarely observed. In contrast, capsidless particles were produced and released in great amounts. Remarkably, the intracytoplasmic capsids were labeled with antibodies against the UL36 and UL37 tegument proteins, whereas the capsidless particles were labeled with antisera directed against the UL46, UL47, and UL49 tegument proteins. These findings suggested that the UL48 protein is involved in linking capsid and future envelope-associated tegument proteins during virion formation. Thus, like its HSV-1 homolog, the UL48 protein of PrV functions in at least two different steps of the viral life cycle. The drastic inhibition of virion formation in the absence of the PrV UL48 protein indicates that it plays an important role in virion morphogenesis prior to secondary envelopment of intracytoplasmic nucleocapsids. However, the UL48 gene of PrV is not absolutely essential, and concomitant deletion of the adjacent tegument protein gene UL49 also did not abolish virus replication in cell culture.


Sign in / Sign up

Export Citation Format

Share Document