scholarly journals Elimination of Protease Activity Restores Efficient Virion Production to a Human Immunodeficiency Virus Type 1 Nucleocapsid Deletion Mutant

2003 ◽  
Vol 77 (10) ◽  
pp. 5547-5556 ◽  
Author(s):  
David E. Ott ◽  
Lori V. Coren ◽  
Elena N. Chertova ◽  
Tracy D. Gagliardi ◽  
Kunio Nagashima ◽  
...  

ABSTRACT The nucleocapsid (NC) region of human immunodeficiency virus type 1 (HIV-1) Gag is required for specific genomic RNA packaging. To determine if NC is absolutely required for virion formation, we deleted all but seven amino acids from NC in a full-length NL4-3 proviral clone. This construct, DelNC, produced approximately four- to sixfold fewer virions than did the wild type, and these virions were noninfectious (less than 10−6 relative to the wild type) and severely genomic RNA deficient. Immunoblot and high-pressure liquid chromatography analyses showed that all of the mature Gag proteins except NC were present in the mutant virion preparations, although there was a modest decrease in Gag processing. DelNC virions had lower densities and were more heterogeneous than wild-type particles, consistent with a defect in the interaction assembly or I domain. Electron microscopy showed that the DelNC virions displayed a variety of aberrant morphological forms. Inactivating the protease activity of DelNC by mutation or protease inhibitor treatment restored virion production to wild-type levels. DelNC-protease mutants formed immature-appearing particles that were as dense as wild-type virions without incorporating genomic RNA. Therefore, protease activity combined with the absence of NC causes the defect in DelNC virion production, suggesting that premature processing of Gag during assembly causes this effect. These results show that HIV-1 can form particles efficiently without NC.

2000 ◽  
Vol 74 (24) ◽  
pp. 11811-11824 ◽  
Author(s):  
Kalpana Gupta ◽  
David Ott ◽  
Thomas J. Hope ◽  
Robert F. Siliciano ◽  
Jef D. Boeke

ABSTRACT Active nuclear import of the human immunodeficiency virus type 1 (HIV-1) preintegration complex (PIC) is essential for the productive infection of nondividing cells. Nuclear import of the PIC is mediated by the HIV-1 matrix protein, which also plays several critical roles during viral entry and possibly during virion production facilitating the export of Pr55Gag and genomic RNA. Using a yeast two-hybrid screen, we identified a novel human virion-associated matrix-interacting protein (VAN) that is highly conserved in vertebrates and expressed in most human tissues. Its expression is upregulated upon activation of CD4+ T cells. VAN is efficiently incorporated into HIV-1 virions and, like matrix, shuttles between the nucleus and cytoplasm. Furthermore, overexpression of VAN significantly inhibits HIV-1 replication in tissue culture. We propose that VAN regulates matrix nuclear localization and, by extension, both nuclear import of the PIC and export of Pr55Gag and viral genomic RNA during virion production. Our data suggest that this regulatory mechanism reflects a more global process for regulation of nucleocytoplasmic transport.


2002 ◽  
Vol 76 (20) ◽  
pp. 10444-10454 ◽  
Author(s):  
Jielin Zhang ◽  
Clyde S. Crumpacker

ABSTRACT An important aspect of the pathophysiology of human immunodeficiency virus type 1 (HIV-1) infection is the ability of the virus to replicate in the host vigorously without a latent phase and to kill cells with a dynamic turnover of 1.8 × 109 cells/day and 10.3 × 109 virions/24 h. The transcription of HIV-1 RNA in acute infection occurs at two stages; the transcription of viral spliced mRNA occurs early, and the transcription of viral genomic RNA occurs later. The HIV-1 Tat protein is translated from the early spliced mRNA and is critical for HIV-1 genomic RNA expression. The cellular transcription factors are important for HIV-1 early spliced mRNA expression. In this study we show that virion nucleocapsid protein (NC) has a role in expression of HIV-1 early spliced mRNA. The HIV-1 NC migrates from the cytoplasm to the nucleus and accumulates in the nucleus at 18 h postinfection. Mutations on HIV-1 NC zinc fingers change the pattern of early viral spliced mRNA expression and result in a delayed expression of early viral mRNA in HIV-infected cells. This delayed HIV-1 early spliced mRNA expression occurs after proviral DNA has been integrated into the cellular genome, as shown by a quantitative integration assay. These results show that virion NC plays an important role in inducing HIV-1 early mRNA expression and contributes to the rapid viral replication that occurs during HIV-1 infection.


1999 ◽  
Vol 43 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Gadi Borkow ◽  
Dominique Arion ◽  
Mark A. Wainberg ◽  
Michael A. Parniak

ABSTRACT N-[4-Chloro-3-(3-methyl-2-butenyloxy)phenyl]-2-methyl-3-furancarbothioamide (UC781) is an exceptionally potent nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. We found that a 1:1 molar combination of UC781 and 3′-azido-3′-deoxythymidine (AZT) showed high-level synergy in inhibiting the replication of AZT-resistant virus, implying that UC781 can restore antiviral activity to AZT against AZT-resistant HIV-1. Neither the nevirapine plus AZT nor the 2′,5′-bis-O-(t-butyldimethylsilyl)-3′-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide plus AZT combinations had this effect. Studies with purified HIV-1 reverse transcriptase (from a wild type and an AZT-resistant mutant) showed that UC781 was a potent inhibitor of the pyrophosphorolytic cleavage of nucleotides from the 3′ end of the DNA polymerization primer, a process that we have proposed to be critical for the phenotypic expression of AZT resistance. Combinations of UC781 plus AZT did not act in synergy to inhibit the replication of either wild-type virus or UC781-resistant HIV-1. Importantly, the time to the development of viral resistance to combinations of UC781 plus AZT is significantly delayed compared to the time to the development of resistance to either drug alone.


2007 ◽  
Vol 51 (8) ◽  
pp. 2701-2708 ◽  
Author(s):  
Hirotomo Nakata ◽  
Masayuki Amano ◽  
Yasuhiro Koh ◽  
Eiichi Kodama ◽  
Guangwei Yang ◽  
...  

ABSTRACT We examined the intracytoplasmic anabolism and kinetics of antiviral activity against human immunodeficiency virus type 1 (HIV-1) of a nucleoside reverse transcriptase inhibitor, 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA), which has potent activity against wild-type and multidrug-resistant HIV-1 strains. When CEM cells were exposed to 0.1 μM [3H]EFdA or [3H]3′-azido-2′,3′-dideoxythymidine (AZT) for 6 h, the intracellular EFdA-triphosphate (TP) level was 91.6 pmol/109 cells, while that of AZT was 396.5 pmol/109 cells. When CEM cells were exposed to 10 μM [3H]EFdA, the amount of EFdA-TP increased by 22-fold (2,090 pmol/109 cells), while the amount of [3H]AZT-TP increased only moderately by 2.4-fold (970 pmol/109 cells). The intracellular half-life values of EFdA-TP and AZT-TP were ∼17 and ∼3 h, respectively. When MT-4 cells were cultured with 0.01 μM EFdA for 24 h, thoroughly washed to remove EFdA, further cultured without EFdA for various periods of time, exposed to HIV-1NL4-3, and cultured for an additional 5 days, the protection values were 75 and 47%, respectively, after 24 and 48 h with no drug incubation, while those with 1 μM AZT were 55 and 9.2%, respectively. The 50% inhibitory concentration values of EFdA-TP against human polymerases α, β, and γ were >100 μM, >100 μM, and 10 μM, respectively, while those of ddA-TP were >100 μM, 0.2 μM, and 0.2 μM, respectively. These data warrant further development of EFdA as a potential therapeutic agent for those patients who harbor wild-type HIV-1 and/or multidrug-resistant variants.


2004 ◽  
Vol 85 (6) ◽  
pp. 1463-1469 ◽  
Author(s):  
Amanda Brown ◽  
Shaghayegh Moghaddam ◽  
Thomas Kawano ◽  
Cecilia Cheng-Mayer

The human immunodeficiency virus type 1 (HIV-1) Nef protein has been shown to accelerate viral growth kinetics in primary human T-lymphocytes and macrophages; however, the specific function(s) of Nef responsible for this phenotype in macrophages is unknown. To address this issue, mutants of a molecularly cloned macrophage-tropic isolate, HIV-1SF162, were generated expressing single point mutations that abrogate the ability of Nef to interact with cellular kinases or mediate CD4 down-regulation. Infection of primary monocyte-derived macrophages (MDM) with these mutant viruses revealed that residues in the PXXP motif contribute to efficient replication. Interestingly, viruses expressing alleles of Nef defective in CD4 down-modulation activity retain wild-type levels of infectivity in single-round assays but exhibited delayed replication kinetics and grew to lower titres compared to the wild-type virus in MDM. These data suggest that efficient HIV-1 replication is dependent on the ability of Nef to interact with cellular kinases and remove CD4 from the surface of infected macrophages.


2005 ◽  
Vol 49 (11) ◽  
pp. 4546-4554 ◽  
Author(s):  
Reynel Cancio ◽  
Romano Silvestri ◽  
Rino Ragno ◽  
Marino Artico ◽  
Gabriella De Martino ◽  
...  

ABSTRACT Indolyl aryl sulfone (IAS) nonnucleoside inhibitors have been shown to potently inhibit the growth of wild-type and drug-resistant human immunodeficiency virus type 1 (HIV-1), but their exact mechanism of action has not been elucidated yet. Here, we describe the mechanism of inhibition of HIV-1 reverse transcriptase (RT) by selected IAS derivatives. Our results showed that, depending on the substitutions introduced in the IAS common pharmacophore, these compounds can be made selective for different enzyme-substrate complexes. Moreover, we showed that the molecular basis for this selectivity was a different association rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the nonnucleoside reverse transcriptase inhibitor-resistant mutant Lys103Asn, it was possible to hypothesize, on the basis of their mechanism of action, a rationale for the design of drugs which could overcome the steric barrier imposed by the Lys103Asn mutation.


2005 ◽  
Vol 49 (5) ◽  
pp. 1761-1769 ◽  
Author(s):  
Anthony J. Smith ◽  
Peter R. Meyer ◽  
Deshratn Asthana ◽  
Margarita R. Ashman ◽  
Walter A. Scott

ABSTRACT Treatment of human immunodeficiency virus type 1 (HIV-1)-infected patients with 3′-azido-3′-deoxythymidine (AZT) selects for mutant forms of viral reverse transcriptase (RT) with increased ability to remove chain-terminating nucleotides from blocked DNA chains. We tested various cell extracts for the presence of endogenous acceptor substrates for this reaction. Cell extracts incubated with HIV-1 RT and [32P]ddAMP-terminated DNA primer/template gave rise to 32P-labeled adenosine 2′,3′-dideoxyadenosine 5′,5′′′−P1,P4-tetraphosphate (Ap4ddA), ddATP, Gp4ddA, and Ap3ddA, corresponding to the transfer of [32P]ddAMP to ATP, PPi, GTP, and ADP, respectively. Incubation with [32P]AZT monophosphate (AZTMP)-terminated primer/template gave rise to the analogous 32P-labeled AZT derivatives. Based on the rates of formation of the specific excision products, ATP and PPi levels were determined: ATP was present at 1.3 to 2.2 mM in H9 cells, macrophages, and unstimulated CD4+ or CD8+ T cells, while PPi was present at 7 to 15 μM. Under these conditions, the ATP-dependent reaction predominated, and excision by the AZT-resistant mutant RT was more efficient than wild type RT. Activated CD4+ or CD8+ T cells contained 1.4 to 2.7 mM ATP and 55 to 79 μM PPi. These cellular PPi concentrations are lower than previously reported; nonetheless, the PPi-dependent reaction predominated in extracts from activated T cells, and excision by mutant and wild-type RT occurred with similar efficiency. While PPi-dependent excision may contribute to AZT resistance in vivo, it is likely that selection of AZT-resistant mutants occurs primarily in an environment where the ATP-dependent reaction predominates.


2006 ◽  
Vol 80 (15) ◽  
pp. 7658-7666 ◽  
Author(s):  
Hironori Nishitsuji ◽  
Michinori Kohara ◽  
Mari Kannagi ◽  
Takao Masuda

ABSTRACT Small interfering RNA (siRNA) could provide a new therapeutic approach to treating human immunodeficiency virus type 1 (HIV-1) infection. For long-term suppression of HIV-1, emergence of siRNA escape variants must be controlled. Here, we constructed lentiviral vectors encoding short-hairpin RNAs (shRNA) corresponding to conserved target sequences within the integrase (int) and the attachment site (att) genes, both of which are essential for HIV-1 integration. Compared to shRNA targeting of the HIV-1 transcription factor tat (shTat), shRNA against int (shIN) or the U3 region of att (shU3) showed a more potent inhibitory effect on HIV-1 replication in human CD4+ T cells. Infection with a high dose of HIV-1 resulted in the emergence of escape mutants during long-term culture. Of note, limited genetic variation was observed in the viruses resistant to shIN. A combination of shINs against wild-type and escape mutant sequences had a negative effect on their antiviral activities, indicating a potentially detrimental effect when administering multiple shRNA targeting the same region to combat HIV-1 variants. The combination of shIN and shU3 att exhibited the strongest anti-HIV-1 activity, as seen by complete abrogation of viral DNA synthesis and viral integration. In addition, a modified long-hairpin RNA spanning the 50 nucleotides in the shIN target region effectively suppressed wild-type and shIN-resistant mutant HIV-1. These results suggest that targeting of incoming viral RNA before proviral DNA formation occurs through the use of nonoverlapping multiple siRNAs is a potent approach to achieving sustained, efficient suppression of highly mutable viruses, such as HIV-1.


2009 ◽  
Vol 83 (7) ◽  
pp. 3059-3068 ◽  
Author(s):  
Manabu Aoki ◽  
David J. Venzon ◽  
Yasuhiro Koh ◽  
Hiromi Aoki-Ogata ◽  
Toshikazu Miyakawa ◽  
...  

ABSTRACT In an attempt to determine whether mutations in Gag in human immunodeficiency virus type 1 (HIV-1) variants selected with a protease inhibitor (PI) affect the development of resistance to the same or a different PI(s), we generated multiple infectious HIV-1 clones carrying mutated Gag and/or mutated protease proteins that were identified in amprenavir (APV)-selected HIV-1 variants and examined their virological characteristics. In an HIV-1 preparation selected with APV (33 passages, yielding HIVAPVp33), we identified six mutations in protease and six apparently critical mutations at cleavage and non-cleavage sites in Gag. An infectious recombinant clone carrying the six protease mutations but no Gag mutations failed to replicate, indicating that the Gag mutations were required for the replication of HIVAPVp33. An infectious recombinant clone that carried wild-type protease and a set of five Gag mutations (rHIVWTpro 12/75/219/390/409gag) replicated comparably to wild-type HIV-1; however, when exposed to APV, rHIVWTpro 12/75/219/390/409gag rapidly acquired APV resistance. In contrast, the five Gag mutations significantly delayed the acquisition of HIV-1 resistance to ritonavir and nelfinavir (NFV). Recombinant HIV-1 clones containing NFV resistance-associated mutations, such as D30N and N88S, had increased susceptibilities to APV, suggesting that antiretroviral regimens including both APV and NFV may bring about favorable antiviral efficacy. The present data suggest that the preexistence of certain Gag mutations related to PI resistance can accelerate the emergence of resistance to the PI and delay the acquisition of HIV resistance to other PIs, and these findings should have clinical relevance in the therapy of HIV-1 infection with PI-including regimens.


2003 ◽  
Vol 77 (15) ◽  
pp. 8524-8531 ◽  
Author(s):  
Connor F. McGrath ◽  
James S. Buckman ◽  
Tracy D. Gagliardi ◽  
William J. Bosche ◽  
Lori V. Coren ◽  
...  

ABSTRACT A family of cellular nucleic acid binding proteins (CNBPs) contains seven Zn2+ fingers that have many of the structural characteristics found in retroviral nucleocapsid (NC) Zn2+ fingers. The sequence of the NH2-terminal NC Zn2+ finger of the pNL4-3 clone of human immunodeficiency virus type 1 (HIV-1) was replaced individually with sequences from each of the seven fingers from human CNBP. Six of the mutants were normal with respect to protein composition and processing, full-length genomic RNA content, and infectivity. One of the mutants, containing the fifth CNBP Zn2+ finger (CNBP-5) packaged reduced levels of genomic RNA and was defective in infectivity. There appear to be defects in reverse transcription in the CNBP-5 infections. Models of Zn2+ fingers were constructed by using computational methods based on available structural data, and atom-atom interactions were determined by the hydropathic orthogonal dynamic analysis of the protein method. Defects in the CNBP-5 mutant could possibly be explained, in part, by restrictions of a set of required atom-atom interactions in the CNBP-5 Zn2+ finger compared to mutant and wild-type Zn2+ fingers in NC that support replication. The present study shows that six of seven of the Zn2+ fingers from the CNBP protein can be used as substitutes for the Zn2+ finger in the NH2-terminal position of HIV-1 NC. This has obvious implications in antiviral therapeutics and DNA vaccines employing NC Zn2+ finger mutants.


Sign in / Sign up

Export Citation Format

Share Document