scholarly journals Specific Cleavages by RNase H Facilitate Initiation of Plus-Strand RNA Synthesis by Moloney Murine Leukemia Virus

2003 ◽  
Vol 77 (9) ◽  
pp. 5275-5285 ◽  
Author(s):  
Sharon J. Schultz ◽  
Miaohua Zhang ◽  
James J. Champoux

ABSTRACT Successful generation, extension, and removal of the plus-strand primer is integral to reverse transcription. For Moloney murine leukemia virus, primer removal at the RNA/DNA junction leaves the 3′ terminus of the plus-strand primer abutting the downstream plus-strand DNA, but this 3′ terminus is not efficiently reutilized for another round of extension. The RNase H cleavage to create the plus-strand primer might similarly result in the 3′ terminus of this primer abutting downstream RNA, yet efficient initiation must occur to synthesize the plus-strand DNA. We hypothesized that displacement synthesis, RNase H activity, or both must participate to initiate plus-strand DNA synthesis. Using model hybrid substrates and RNase H-deficient reverse transcriptases, we found that displacement synthesis alone did not efficiently extend the plus-strand primer at a nick with downstream RNA. However, specific cleavage sites for RNase H were identified in the sequence immediately following the 3′ end of the plus-strand primer. During generation of the plus-strand primer, cleavage at these sites generated a gap. When representative gaps separated the 3′ terminus of the plus-strand primer from downstream RNA, primer extension significantly improved. The contribution of RNase H to the initiation of plus-strand DNA synthesis was confirmed by comparing the effects of downstream RNA versus DNA on plus-strand primer extension by wild-type reverse transcriptase. These data suggest a model in which efficient initiation of plus-strand synthesis requires the generation of a gap immediately following the plus-strand primer 3′ terminus.

2015 ◽  
Vol 113 ◽  
pp. 44-50 ◽  
Author(s):  
Kosaku Nishimura ◽  
Kanta Yokokawa ◽  
Tetsuro Hisayoshi ◽  
Kosuke Fukatsu ◽  
Ikumi Kuze ◽  
...  

2002 ◽  
Vol 76 (19) ◽  
pp. 9614-9623 ◽  
Author(s):  
Ting Li ◽  
Jiayou Zhang

ABSTRACT Retroviral recombination can occur between two viral RNA molecules (intermolecular) or between two sequences within the same RNA molecule (intramolecular). The rate of retroviral intramolecular recombination is high. Previous studies showed that, after a single round of replication, 50 to 60% of retroviral recombinations occur between two identical sequences within a Moloney murine leukemia virus-based vector. Recombination can occur at any polymerization step within the retroviral replication cycle. Although reverse transcriptase is assumed to contribute to the template switches, previous studies could not distinguish between changes introduced by host RNA polymerase II (Pol II) or by reverse transcriptase. A cell culture system has been established to detect the individual contribution of host RNA Pol II, host DNA polymerase or viral reverse transcriptase, as well as the recombination events taking place during minus-strand DNA synthesis and plus-strand DNA synthesis in a single round of viral intramolecular replication. Studies in this report demonstrate that intramolecular recombination between two identical sequences during transcription by host RNA Pol II is minimal and that most recombinations occur during minus-strand DNA synthesis catalyzed by viral reverse transcriptase.


2011 ◽  
Vol 8 (2) ◽  
pp. 629-634
Author(s):  
Ajay Kumar

The small dumbbell oligonucleotides containing loops of phosphodiester (OL-1), two trimethylene, C3moieties in each loop (OL-2) and phosphorothioate (OL-3) linkages were synthesized. Incubation of OL-1 and OL-2 with S-1 nuclease generated break down products whereas incubation of OL-3 did not result in significant cleavage. Their binding to moloney murine leukemia virus reverse transcriptase was evaluated by PAGE band mobility shift assays. The OL-3 bound more strongly to the reverse transcriptase than OL-1 and OL-2. The dissociation constants evaluated using PAGE band mobility shift assays were of the order of 10-7. Investigation of inhibition of RNase H activity of reverse transcriptase showed that the OL-3 is a better inhibitor of the retroviral RNase H activity than both OL-1 and OL-2. Thus OL-3 may be used as RNase H inhibitor. Our studies demonstrated that this particularly designed oligonucleotide (OL-3) displays an IC50of 25 nM in its inhibition on the reverse transcriptase RNase H activity, a magnitude lower than that of first nucleotide reverse transcriptase of HIV-1, tenofovir, introduced by Gilead Science in the market.


Sign in / Sign up

Export Citation Format

Share Document