scholarly journals The Baculovirus GP64 Protein Mediates Highly Stable Infectivity of a Human Respiratory Syncytial Virus Lacking Its Homologous Transmembrane Glycoproteins

2004 ◽  
Vol 78 (1) ◽  
pp. 124-135 ◽  
Author(s):  
A. G. P. Oomens ◽  
Gail W. Wertz

ABSTRACT Baculovirus GP64 is a low-pH-dependent membrane fusion protein required for virus entry and cell-to-cell transmission. Recently, GP64 has generated interest for practical applications in mammalian systems. Here we examined the membrane fusion function of GP64 from Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressed in mammalian cells, as well as its capacity to functionally complement a mammalian virus, human respiratory syncytial virus (HRSV). Both authentic GP64 and GP64/F, a chimeric protein in which the GP64 cytoplasmic tail domain was replaced with the 12 C-terminal amino acids of the HRSV fusion (F) protein, induced low-pH-dependent cell-cell fusion when expressed transiently in HEp-2 (human) cells. Levels of surface expression and syncytium formation were substantially higher at 33°C than at 37°C. The open reading frames (ORFs) encoding GP64 or GP64/F, along with two marker ORFs encoding green fluorescent protein (GFP) and β-glucuronidase (GUS), were used to replace all three homologous transmembrane glycoprotein ORFs (small hydrophobic SH, attachment G, and F) in a cDNA of HRSV. Infectious viruses were recovered that lacked the HRSV SH, G, and F proteins and expressed instead the GP64 or GP64/F protein and the two marker proteins GFP and GUS. The properties of these viruses, designated RSΔsh,g,f/GP64 or RSΔsh,g,f/GP64/F, respectively, were compared to a previously described HRSV expressing GFP in place of SH but still containing the wild-type HRSV G and F proteins (RSΔsh [A. G. Oomens, A. G. Megaw, and G. W. Wertz, J. Virol., 77:3785-3798, 2003]). By immunoelectron microscopy, the GP64 and GP64/F proteins were shown to incorporate into HRSV-induced filaments at the cell surface. Antibody neutralization, ammonium chloride inhibition, and replication levels in cell culture showed that both GP64 proteins efficiently mediated infectivity of the respective viruses in a temperature-sensitive, low-pH-dependent manner. Furthermore, RSΔsh,g,f/GP64 and RSΔsh,g,f/GP64/F replicated to higher levels and had significantly higher stability of infectivity than HRSVs containing the homologous HRSV G and F proteins. Thus, GP64 and a GP64/HRSV F chimeric protein were functional and efficiently complemented an unrelated human virus in mammalian cells, producing stable, infectious virus stocks. These results demonstrate the potential of GP64 for both practical applications requiring stable pseudotypes in mammalian systems and for studies of viral glycoprotein requirements in assembly and pathogenesis.

2006 ◽  
Vol 87 (6) ◽  
pp. 1649-1658 ◽  
Author(s):  
Diana Martín ◽  
Lesley J. Calder ◽  
Blanca García-Barreno ◽  
John J. Skehel ◽  
José A. Melero

We have reported previously the expression and purification of an anchorless form of the human respiratory syncytial virus (HRSV) F protein () representing the ectodomain of the full-length F. molecules are seen as unaggregated cones by electron microscopy but completion of proteolytic cleavage of the F0 monomers in the trimer leads to a change in shape from cones to lollipops that aggregate into rosettes. This aggregation apparently occurs by interaction of the fusion peptides of molecules that are exposed after cleavage. Since exposure of the fusion peptide is a key event in the process of membrane fusion, changes associated with cleavage may reflect those occurring in full-length F during membrane fusion. Deletions or substitutions that changed either the length, charge or hydrophobicity of the fusion peptide inhibited aggregation of , and these mutants remained as unaggregated cones after cleavage. In contrast, more conservative changes did not inhibit the change of shape and aggregation of . When the same changes were introduced in the fusion peptide of full-length F, only the mutations that inhibited aggregation of prevented membrane fusion. Thus, the conformational changes that follow completion of cleavage of the protein require a functional fusion peptide. These sequence constraints may restrict accumulation of sequence changes in the fusion peptide of HRSV F when compared with other hydrophobic regions of the molecule.


2004 ◽  
Vol 85 (12) ◽  
pp. 3677-3687 ◽  
Author(s):  
M. Begoña Ruiz-Argüello ◽  
Diana Martín ◽  
Steve A. Wharton ◽  
Lesley J. Calder ◽  
Steve R. Martín ◽  
...  

2007 ◽  
Vol 88 (2) ◽  
pp. 570-581 ◽  
Author(s):  
Isidoro Martínez ◽  
Luis Lombardía ◽  
Blanca García-Barreno ◽  
Orlando Domínguez ◽  
José A. Melero

cDNA microarray technology was applied to time course analysis of differentially expressed genes in A549 cells following human respiratory syncytial virus (HRSV) infection. Both up- and down-regulation of cellular genes were observed in a time-dependent manner. However, gene up-regulation prevailed over gene down-regulation. Virus infectivity was required as UV-inactivated virus failed to up-regulate/down-regulate those genes. At early times post-infection (0–6 h p.i.) 85 genes were up-regulated. Some of those genes were involved in cell growth/proliferation, cellular protein metabolism and cytoskeleton organization. Among the most strongly up-regulated genes at that time were the urokinase plasminogen activator (PLAU) and its receptor (PLAUR), a pleiotropic system involved in many biological processes, including chemotaxis and inflammation. Functionally related genes encoding the α- and β-chains of several integrins were also up-regulated within the first 12 h of infection. Genes up-regulated between 6 and 12 h p.i. included interferon-stimulated genes (ISGs), genes related to oxidative stress and genes of the non-canonical NF-κB pathway. At later times, genes involved in the immune response became predominant among the up-regulated genes, most of them being ISGs. Different up-regulation kinetics of cytokine and cytokine-signalling-related genes were also observed. These results highlight the dynamic interplay between the virus and the host cell and provide a general picture of changes in cellular gene expression along the HRSV replicative cycle.


2006 ◽  
Vol 87 (1) ◽  
pp. 159-169 ◽  
Author(s):  
María T. Llorente ◽  
Blanca García-Barreno ◽  
Miguel Calero ◽  
Emilio Camafeita ◽  
Juan A. López ◽  
...  

Human respiratory syncytial virus (HRSV) phosphoprotein (P), an essential cofactor of the viral polymerase, is much shorter (241 aa) than and has no sequence similarity to P of other paramyxoviruses. Nevertheless, bioinformatic analysis of HRSV P sequence revealed a modular organization, reminiscent of other paramyxovirus Ps, with a central structured domain (aa 100–200), flanked by two intrinsically disordered regions (1–99 and 201–241). To test the predicted structure experimentally, HRSV P was purified from cell extracts infected with recombinant vaccinia virus or HRSV. The estimated molecular mass of P by gel filtration (∼500 kDa) greatly exceeded the theoretical mass of a homotetramer, proposed as the oligomeric form of native P. Nevertheless, the profile of cross-linked products obtained with purified P resembled that reported by others with P purified from bacteria or mammalian cells. Thus, the shape of HRSV P probably influences its elution from the gel filtration column, as reported for other paramyxovirus Ps. Digestion of purified HRSV P with different proteases identified a trypsin-resistant fragment (X) that reacted with a previously characterized monoclonal antibody (021/2P). N-terminal sequencing and mass spectrometry analysis placed the X fragment boundaries (Glu-104 and Arg-163) within the predicted structured domain of P. Cross-linking and circular dichroism analyses indicated that fragment X was oligomeric, with a high α-helical content, properties resembling those of the multimerization domain of Sendai and rinderpest virus P. These results denote structural features shared by HRSV and other paramyxovirus Ps and should assist in elucidation of the HRSV P structure.


Sign in / Sign up

Export Citation Format

Share Document