cellular receptor
Recently Published Documents


TOTAL DOCUMENTS

454
(FIVE YEARS 73)

H-INDEX

75
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Darielys Santana ◽  
Rocmira Perez Nicado ◽  
Yanet Climent ◽  
Laura Marta Marta Rodríguez Noda ◽  
Belinda Sánchez Ramírez ◽  
...  

SARS-CoV-2 infection is mediated by the interaction of the spike glycoprotein trimer via its receptor-binding domain (RBD) with the host’s cellular receptor. Vaccines seek to block this interaction by eliciting...


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hongyue Li ◽  
Yuhang Zhang ◽  
Dong Li ◽  
Yong-Qiang Deng ◽  
Hongde Xu ◽  
...  

AbstractSARS-CoV-2 and SARS-CoV are genetically related coronavirus and share the same cellular receptor ACE2. By replacing the VSV glycoprotein with the spikes (S) of SARS-CoV-2 and SARS-CoV, we generated two replication-competent recombinant viruses, rVSV-SARS-CoV-2 and rVSV-SARS-CoV. Using wild-type and human ACE2 (hACE2) knock-in mouse models, we found a single dose of rVSV-SARS-CoV could elicit strong humoral immune response via both intranasal (i.n.) and intramuscular (i.m.) routes. Despite the high genetic similarity between SARS-CoV-2 and SARS-CoV, no obvious cross-neutralizing activity was observed in the immunized mice sera. In macaques, neutralizing antibody (NAb) titers induced by one i.n. dose of rVSV-SARS-CoV-2 were eight-fold higher than those by a single i.m. dose. Thus, our data indicates that rVSV-SARS-CoV-2 might be suitable for i.n. administration instead of the traditional i.m. immunization in human. Because rVSV-SARS-CoV elicited significantly stronger NAb responses than rVSV-SARS-CoV-2 in a route-independent manner, we generated a chimeric antigen by replacing the receptor binding domain (RBD) of SARS-CoV S with that from the SARS-CoV-2. rVSV expressing the chimera (rVSV-SARS-CoV/2-RBD) induced significantly increased NAbs against SARS-CoV-2 in mice and macaques than rVSV-SARS-CoV-2, with a safe Th1-biased response. Serum immunized with rVSV-SARS-CoV/2-RBD showed no cross-reactivity with SARS-CoV. hACE2 mice receiving a single i.m. dose of either rVSV-SARS-CoV-2 or rVSV-SARS-CoV/2-RBD were fully protected against SARS-CoV-2 challenge without obvious lesions in the lungs. Our results suggest that transplantation of SARS-CoV-2 RBD into the S protein of SARS-CoV might be a promising antigen design for COVID-19 vaccines.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lennox Chitsike ◽  
John Krstenansky ◽  
Penelope J. Duerksen-Hughes

The COVID-19 pandemic that began in late 2019 continues with new challenges arising due to antigenic drift as well as individuals who cannot or choose not to take the vaccine. There is therefore an urgent need for additional therapies that complement vaccines and approved therapies such as antibodies in the fight to end or slow down the pandemic. SARS-CoV-2 initiates invasion of the human target cell through direct contact between the receptor-binding domain of its Spike protein and its cellular receptor, angiotensin-converting enzyme-2 (ACE2). The ACE2 and S1 RBD interaction, therefore, represents an attractive therapeutic intervention to prevent viral entry and spread. In this study, we developed a proximity-based AlphaScreen™ assay that can be utilized to quickly and efficiently screen for inhibitors that perturb the ACE2 : S1 RBD interaction. We then designed several peptides candidates from motifs in ACE2 and S1 RBD that play critical roles in the interaction, with and without modifications to the native sequences. We also assessed the possibility of reprofiling of candidate small molecules that previously have been shown to interfere with the viral entry of SARS-CoV. Using our optimized AlphaScreen™ assay, we evaluated the activity and specificity of these peptides and small molecules in inhibiting the binding of ACE2 : S1 RBD. This screen identified cepharanthine as a promising candidate for development as a SARS-CoV-2 entry inhibitor.


Author(s):  
Lanying Du ◽  
Yang Yang ◽  
Xiujuan Zhang

AbstractSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initiates the infection process by binding to the viral cellular receptor angiotensin-converting enzyme 2 through the receptor-binding domain (RBD) in the S1 subunit of the viral spike (S) protein. This event is followed by virus–cell membrane fusion mediated by the S2 subunit, which allows virus entry into the host cell. Therefore, the SARS-CoV-2 S protein is a key therapeutic target, and prevention and treatment of coronavirus disease 2019 (COVID-19) have focused on the development of neutralizing monoclonal antibodies (nAbs) that target this protein. In this review, we summarize the nAbs targeting SARS-CoV-2 proteins that have been developed to date, with a focus on the N-terminal domain and RBD of the S protein. We also describe the roles that binding affinity, neutralizing activity, and protection provided by these nAbs play in the prevention and treatment of COVID-19 and discuss the potential to improve nAb efficiency against multiple SARS-CoV-2 variants. This review provides important information for the development of effective nAbs with broad-spectrum activity against current and future SARS-CoV-2 strains.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1038
Author(s):  
Deborah Giordano ◽  
Luigi De Masi ◽  
Maria Antonia Argenio ◽  
Angelo Facchiano

An outbreak by a new severe acute respiratory syndrome betacoronavirus (SARS-CoV-2) has spread CoronaVirus Disease 2019 (COVID-19) all over the world. Immediately, following studies have confirmed the human Angiotensin-Converting Enzyme 2 (ACE2) as a cellular receptor of viral Spike-Protein (Sp) that mediates the CoV-2 invasion into the pulmonary host cells. Here, we compared the molecular interactions of the viral Sp from previous SARS-CoV-1 of 2002 and SARS-CoV-2 with the host ACE2 protein by in silico analysis of the available experimental structures of Sp-ACE2 complexes. The K417 amino acid residue, located in the region of Sp Receptor-Binding Domain (RBD) of the new coronavirus SARS-CoV-2, showed to have a key role for the binding to the ACE2 N-terminal region. The R426 residue of SARS-CoV-1 Sp-RBD also plays a key role, although by interacting with the central region of the ACE2 sequence. Therefore, our study evidenced peculiarities in the interactions of the two Sp-ACE2 complexes. Our outcomes were consistent with previously reported mutagenesis studies on SARS-CoV-1 and support the idea that a new and different RBD was acquired by SARS-CoV-2. These results have interesting implications and suggest further investigations.


Author(s):  
Jun Zhang ◽  
Tianshu Xiao ◽  
Yongfei Cai ◽  
Christy L. Lavine ◽  
Hanqin Peng ◽  
...  

AbstractThe Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report here structure, function and antigenicity of its full-length spike (S) trimer in comparison with those of other variants, including Gamma, Kappa, and previously characterized Alpha and Beta. Delta S can fuse membranes more efficiently at low levels of cellular receptor ACE2 and its pseudotyped viruses infect target cells substantially faster than all other variants tested, possibly accounting for its heightened transmissibility. Mutations of each variant rearrange the antigenic surface of the N-terminal domain of the S protein in a unique way, but only cause local changes in the receptor-binding domain, consistent with greater resistance particular to neutralizing antibodies. These results advance our molecular understanding of distinct properties of these viruses and may guide intervention strategies.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2800
Author(s):  
Fang-Ju Cheng ◽  
Thanh-Kieu Huynh ◽  
Chia-Shin Yang ◽  
Dai-Wei Hu ◽  
Yi-Cheng Shen ◽  
...  

Hesperidin (HD) is a common flavanone glycoside isolated from citrus fruits and possesses great potential for cardiovascular protection. Hesperetin (HT) is an aglycone metabolite of HD with high bioavailability. Through the docking simulation, HD and HT have shown their potential to bind to two cellular proteins: transmembrane serine protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2), which are required for the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results further found that HT and HD suppressed the infection of VeroE6 cells using lentiviral-based pseudo-particles with wild types and variants of SARS-CoV-2 with spike (S) proteins, by blocking the interaction between the S protein and cellular receptor ACE2 and reducing ACE2 and TMPRSS2 expression. In summary, hesperidin is a potential TMPRSS2 inhibitor for the reduction of the SARS-CoV-2 infection.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding hepatitis A virus cellular receptor 2, HAVCR2, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. HAVCR2 expression was significantly higher in high-grade serous ovarian tumors relative to normal fallopian tube. HAVCR2 expression correlated with progression-free survival in patients with ovarian cancer. These data indicate that expression of HAVCR2 is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. HAVCR2 may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


2021 ◽  
Author(s):  
Xavier Montagutelli ◽  
Matthieu Prot ◽  
Gregory Jouvion ◽  
Laurine Levillayer ◽  
Laurine Conquet ◽  
...  

SARS-CoV-2 has infected almost 200 million humans and caused over 4 million deaths worldwide. Evaluating countermeasures and improving our understanding of COVID-19 pathophysiology require access to animal models that replicate the hallmarks of human disease. Mouse infection with SARS-CoV-2 is limited by poor affinity between the virus spike protein and its cellular receptor ACE2. We have developed by serial passages the MACo3 virus strain which efficiently replicates in the lungs of standard mouse strains and induces age-dependent lung lesions. Compared to other mouse-adapted strains and severe mouse models, infection with MACo3 results in mild to moderate disease and will be useful to investigate the role of host genetics and other factors modulating COVID-19 severity.


Sign in / Sign up

Export Citation Format

Share Document