scholarly journals Transmitted Human Immunodeficiency Virus Type 1 Carrying the D67N or K219Q/E Mutation Evolves Rapidly to Zidovudine Resistance In Vitro and Shows a High Replicative Fitness in the Presence of Zidovudine

2004 ◽  
Vol 78 (14) ◽  
pp. 7545-7552 ◽  
Author(s):  
J. Gerardo García-Lerma ◽  
Hamish MacInnes ◽  
Diane Bennett ◽  
Hillard Weinstock ◽  
Walid Heneine

ABSTRACT Drug-naive patients infected with drug-resistant human immunodeficiency virus type 1 (HIV-1) who initiate antiretroviral therapy show a shorter time to virologic failure than patients infected with wild-type (WT) viruses. Resistance-related HIV genotypes not commonly seen in treated patients, which likely result from reversion or loss of primary resistance mutations, have also been recognized in drug-naive persons. Little work has been done to characterize the patterns of mutations in these viruses and the frequency of occurrence, their association with phenotypic resistance, and their effect on fitness and evolution of resistance. Through the analysis of resistance mutations in 1082 newly diagnosed antiretroviral-naive persons from the United States, we found that 35 of 48 (72.9%) persons infected with HIV-1 containing thymidine analog mutations (TAMs) had viruses that lacked a primary mutation (T215Y/F, K70R, or Q151M). Of these viruses, 9 (25.7%) had only secondary TAMs (D67N, K219Q, M41L, or F77L), and all were found to be sensitive to zidovudine (AZT) and other drugs. To assess the impact of secondary TAMs on the evolution of AZT resistance, we generated recombinant viruses from cloned plasma-derived reverse transcriptase sequences. Two viruses had D67N, three had D67N and K219Q/E, and three were WT. Four site-directed mutants with D67N, K219Q, K219E, and D67N/K219Q were also made in HIV-1HXB2. In vitro selection of AZT resistance showed that viruses with D67N and/or K219Q/E acquired AZT resistance mutations more rapidly than WT viruses (36 days compared to 54 days; P = 0.003). To investigate the factors associated with the rapid selection of AZT mutations in these viruses, we evaluated fitness differences among HXB2WT and HXB2D67N or HXB2D67N/K219Q in the presence of AZT. Both HXB2D67N/K219Q and HXB2D67N were more fit than HXB2WT in the presence of either low or high AZT concentrations, likely reflecting low-level resistance to AZT that is not detectable by phenotypic testing. In the absence of AZT, the fitness cost conferred by D67N or K219Q was modest. Our results demonstrate that viruses with unique patterns of TAMs, including D67N and/or K219Q/E, are commonly found among newly diagnosed persons and illustrate the expanding diversity of revertant viruses in this population. The modest fitness cost conferred by D67N and K219Q supports persistence of these mutants in the untreated population and highlights the potential for secondary transmission. The faster evolution of these mutants toward AZT resistance is consistent with the higher viral fitness in the presence of AZT and shows that these viruses are phenotypically different from WT HIV-1. Our study emphasizes the need for clinical studies to better define the impact of these mutants on treatment responses and evolution of resistance.

2010 ◽  
Vol 84 (19) ◽  
pp. 10402-10405 ◽  
Author(s):  
Eun-Young Kim ◽  
Tanmoy Bhattacharya ◽  
Kevin Kunstman ◽  
Peter Swantek ◽  
Fransje A. Koning ◽  
...  

ABSTRACT Human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, hereinafter referred to as A3G) is an innate virus restriction factor that inhibits human immunodeficiency virus type 1 (HIV-1) replication and induces excessive deamination of cytidine residues in nascent reverse transcripts. To test the hypothesis that this enzyme can also help generate viral sequence diversification and the evolution of beneficial viral variants, we have examined the impact of A3G on the acquisition of (−)2′,3′-dideoxy-3′-thiacytidine (3TC) resistance in vitro. That characteristic resistance mutations are rapidly fixed in the presence of A3G and 3TC suggests that A3G-mediated editing can be an important source of genetic variation on which natural selection acts to shape the structure of HIV-1 populations.


2001 ◽  
Vol 45 (6) ◽  
pp. 1621-1628 ◽  
Author(s):  
Jennifer L. Hammond ◽  
Dianna L. Koontz ◽  
Holly Z. Bazmi ◽  
James R. Beadle ◽  
Saskia E. Hostetler ◽  
...  

ABSTRACT Phosphonoformate (foscarnet; PFA) is a potent inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), but its use for the treatment of HIV-1 infection is limited by toxicity and the lack of an orally bioavailable formulation. Alkylglycerol-conjugated prodrugs of PFA (1-O-octadecyl-sn-glycero-3-PFA [B-PFA]) having sn-2 substituents of hydrogen (deoxybatyl-PFA [DB-PFA]), methyl (MB-PFA), or ethyl (EB-PFA) are more-potent inhibitors of wild-type HIV-1 in vitro than unmodified PFA and are orally bioavailable in mice. We have evaluated the activities of these compounds against a panel of nucleoside-resistant HIV-1 variants and have characterized the resistant variants that emerge following in vitro selection with the prodrugs. Except for an HIV-1 variant encoding the K65R mutation in RT that exhibited 3.3- to 8.2-fold resistance, the nucleoside-resistant viruses included in the panel were sensitive to the PFA prodrugs (<3-fold increase in 50% inhibitory concentration), including multinucleoside-resistant variants encoding the Q151M complex of mutations or the T69S[SA] insert. Viruses resistant to the PFA prodrugs (>10-fold) were selected in vitro after 15 or more serial passages of HIV-1 in MT-2 cells in escalating prodrug concentrations. Mutations detected in the resistant viruses were S117T, F160Y, and L214F (DB-PFA); M164I and L214F (MB-PFA); and W88G and L214F (EB-PFA). The S117T, F160Y, and M164I mutations have not been previously identified. Generation of recombinant viruses encoding the single and double mutations confirmed their roles in prodrug resistance, including 214F, which generally increased the level of resistance. When introduced into a zidovudine (AZT)-resistant background (67N 70R 215F 219Q), the W88G, S117T, F160Y, and M164I mutations reversed AZT resistance. This suppression of AZT resistance is consistent with the effects of other foscarnet resistance mutations that reduce ATP-dependent removal of AZT monophosphate from terminated template primers. The favorable activity and resistance profiles of these PFA prodrugs warrant their further evaluation as clinical candidates.


1999 ◽  
Vol 43 (8) ◽  
pp. 1835-1844 ◽  
Author(s):  
Jean-Marc de Muys ◽  
Henriette Gourdeau ◽  
Nghe Nguyen-Ba ◽  
Debra L. Taylor ◽  
Parvin S. Ahmed ◽  
...  

ABSTRACT The racemic nucleoside analogue 2′-deoxy-3′-oxa-4′-thiocytidine (dOTC) is in clinical development for the treatment of human immunodeficiency virus (HIV) type 1 (HIV-1) infection. dOTC is structurally related to lamivudine (3TC), but the oxygen and sulfur in the furanosyl ring are transposed. Intracellular metabolism studies showed that dOTC is phosphorylated within cells via the deoxycytidine kinase pathway and that approximately 2 to 5% of dOTC is converted into the racemic triphosphate derivatives, which had measurable half-lives (2 to 3 hours) within cells. Both 5′-triphosphate (TP) derivatives of dOTC were more potent than 3TC-TP at inhibiting HIV-1 reverse transcriptase (RT) in vitro. The Ki values for dOTC-TP obtained against human DNA polymerases α, β, and γ were 5,000-, 78-, and 571-fold greater, respectively, than those for HIV RT (28 nM), indicating a good selectivity for the viral enzyme. In culture experiments, dOTC is a potent inhibitor of primary isolates of HIV-1, which were obtained from antiretroviral drug-naive patients as well as from nucleoside therapy-experienced (3TC- and/or zidovudine [AZT]-treated) patients. The mean 50% inhibitory concentration of dOTC for drug-naive isolates was 1.76 μM, rising to only 2.53 and 2.5 μM for viruses resistant to 3TC and viruses resistant to 3TC and AZT, respectively. This minimal change in activity is in contrast to the more dramatic changes observed when 3TC or AZT was evaluated against these same viral isolates. In tissue culture studies, the 50% toxicity levels for dOTC, which were determined by using [3H]thymidine uptake as a measure of logarithmic-phase cell proliferation, was greater than 100 μM for all cell lines tested. In addition, after 14 days of continuous culture, at concentrations up to 10 μM, no measurable toxic effect on HepG2 cells or mitochondrial DNA replication within these cells was observed. When administered orally to rats, dOTC was well absorbed, with a bioavailability of approximately 77%, with a high proportion (approximately 16.5% of the levels in serum) found in the cerebrospinal fluid.


2001 ◽  
Vol 75 (10) ◽  
pp. 4832-4842 ◽  
Author(s):  
Paul L. Boyer ◽  
Stefan G. Sarafianos ◽  
Edward Arnold ◽  
Stephen H. Hughes

ABSTRACT Two distinct mechanisms can be envisioned for resistance of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) to nucleoside analogs: one in which the mutations interfere with the ability of HIV-1 RT to incorporate the analog, and the other in which the mutations enhance the excision of the analog after it has been incorporated. It has been clear for some time that there are mutations that selectively interfere with the incorporation of nucleoside analogs; however, it has only recently been proposed that zidovudine (AZT) resistance can involve the excision of the nucleoside analog after it has been incorporated into viral DNA. Although this proposal resolves some important issues, it leaves some questions unanswered. In particular, how do the AZT resistance mutations enhance excision, and what mechanism(s) causes the excision reaction to be relatively specific for AZT? We have used both structural and biochemical data to develop a model. In this model, several of the mutations associated with AZT resistance act primarily to enhance the binding of ATP, which is the most likely pyrophosphate donor in the in vivo excision reaction. The AZT resistance mutations serve to increase the affinity of RT for ATP so that, at physiological ATP concentrations, excision is reasonably efficient. So far as we can determine, the specificity of the excision reaction for an AZT-terminated primer is not due to the mutations that confer resistance, but depends instead on the structure of the region around the HIV-1 RT polymerase active site and on its interactions with the azido group of AZT. Steric constraints involving the azido group cause the end of an AZT 5′-monophosphate-terminated primer to preferentially reside at the nucleotide binding site, which favors excision.


2011 ◽  
Vol 55 (12) ◽  
pp. 5723-5731 ◽  
Author(s):  
Inge Dierynck ◽  
Herwig Van Marck ◽  
Marcia Van Ginderen ◽  
Tim H. M. Jonckers ◽  
Madhavi N. L. Nalam ◽  
...  

ABSTRACTTMC310911 is a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) structurally closely related to darunavir (DRV) but with improved virological characteristics. TMC310911 has potent activity against wild-type (WT) HIV-1 (median 50% effective concentration [EC50], 14 nM) and a wide spectrum of recombinant HIV-1 clinical isolates, including multiple-PI-resistant strains with decreased susceptibility to currently approved PIs (fold change [FC] in EC50, >10). For a panel of 2,011 recombinant clinical isolates with decreased susceptibility to at least one of the currently approved PIs, the FC in TMC310911 EC50was ≤4 for 82% of isolates and ≤10 for 96% of isolates. The FC in TMC310911 EC50was ≤4 and ≤10 for 72% and 94% of isolates with decreased susceptibility to DRV, respectively.In vitroresistance selection (IVRS) experiments with WT virus and TMC310911 selected for mutations R41G or R41E, but selection of resistant virus required a longer time than IVRS performed with WT virus and DRV. IVRS performed with r13025, a multiple-PI-resistant recombinant clinical isolate, and TMC310911 selected for mutations L10F, I47V, and L90M (FC in TMC310911 EC50= 16). IVRS performed with r13025 in the presence of DRV required less time and resulted in more PI resistance-associated mutations (V32I, I50V, G73S, L76V, and V82I; FC in DRV EC50= 258). The activity against a comprehensive panel of PI-resistant mutants and the limitedin vitroselection of resistant viruses under drug pressure suggest that TMC310911 represents a potential drug candidate for the management of HIV-1 infection for a broad range of patients, including those with multiple PI resistance.


2007 ◽  
Vol 81 (15) ◽  
pp. 7852-7859 ◽  
Author(s):  
Jessica H. Brehm ◽  
Dianna Koontz ◽  
Jeffrey D. Meteer ◽  
Vinay Pathak ◽  
Nicolas Sluis-Cremer ◽  
...  

ABSTRACT Recent work indicates that mutations in the C-terminal domains of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) increase 3′-azido-3′-dideoxythymidine (AZT) resistance. Because it is not known whether AZT selects for mutations outside of the polymerase domain of RT, we carried out in vitro experiments in which HIV-1LAI or AZT-resistant HIV-1LAI (M41L/L210W/T215Y) was passaged in MT-2 cells in increasing concentrations of AZT. The first resistance mutations to appear in HIV-1LAI were two polymerase domain thymidine analog mutations (TAMs), D67N and K70R, and two novel mutations, A371V in the connection domain and Q509L in the RNase H domain, that together conferred up to 90-fold AZT resistance. Thereafter, the T215I mutation appeared but was later replaced by T215F, resulting in a large increase in AZT resistance (∼16,000-fold). Mutations in the connection and RNase H domains were not selected starting with AZT-resistant virus (M41L/L210W/T215Y). The roles of A371V and Q509L in AZT resistance were confirmed by site-directed mutagenesis: A371V and Q509L together increased AZT resistance ∼10- to 50-fold in combination with TAMs (M41L/L210W/T215Y or D67N/K70R/T215F) but had a minimal effect without TAMs (1.7-fold). A371V and Q509L also increased cross-resistance with TAMs to lamivudine and abacavir, but not stavudine or didanosine. These results provide the first evidence that mutations in the connection and RNase H domains of RT can be selected in vitro by AZT and confer greater AZT resistance and cross-resistance to nucleoside RT inhibitors in combination with TAMs in the polymerase domain.


2004 ◽  
Vol 78 (9) ◽  
pp. 4628-4637 ◽  
Author(s):  
Jing Lu ◽  
Prakash Sista ◽  
Françoise Giguel ◽  
Michael Greenberg ◽  
Daniel R. Kuritzkes

ABSTRACT Resistance to enfuvirtide (ENF; T-20), a fusion inhibitor of human immunodeficiency virus type 1 (HIV-1), is conferred by mutations in the first heptad repeat of the gp41 ectodomain. The replicative fitness of recombinant viruses carrying ENF resistance mutations was studied in growth competition assays. ENF resistance mutations, selected in vitro or in vivo, were introduced into the env gene of HIV-1NL4-3 by site-directed mutagenesis and expressed in HIV-1 recombinants carrying sequence tags in nef. The doubling time of ENF-resistant viruses was highly correlated with decreasing ENF susceptibility (R 2 = 0.859; P < 0.001). Initial fitness experiments focused on mutants identified by in vitro selection in the presence of ENF (L. T. Rimsky, D. C. Shugars, and T. J. Matthews, J. Virol. 72:986-993, 1998). In the absence of drug, these mutants displayed reduced fitness compared to wild-type virus with a relative order of fitness of wild type > I37T > V38 M > D36S/V38 M; this order was reversed in the presence of ENF. Likewise, recombinant viruses carrying ENF resistance mutations selected in vivo displayed reduced fitness in the absence of ENF with a relative order of wild type > N42T > V38A > N42T/N43K ≈ N42T/N43S > V38A/N42D ≈ V38A/N42T. Fitness and ENF susceptibility were inversely correlated (r = −0.988; P < 0.001). Similar results were obtained with recombinants expressing molecularly cloned full-length env genes obtained from patient-derived HIV-1 isolates before and after ENF treatment. Further studies are needed to determine whether the reduced fitness of ENF-resistant viruses alters their pathogenicity in vivo.


2002 ◽  
Vol 76 (18) ◽  
pp. 9143-9151 ◽  
Author(s):  
Paul L. Boyer ◽  
Stefan G. Sarafianos ◽  
Edward Arnold ◽  
Stephen H. Hughes

ABSTRACT Although anti-human immunodeficiency virus type 1 (HIV-1) therapy has prolonged the lives of patients, drug resistance is a significant problem. Of particular concern are mutations that cause cross-resistance to a particular class of drugs. Among the mutations that cause resistance to several nucleoside analogs are the insertion of amino acids in the fingers subdomain of HIV-1 reverse transcriptase (RT) at positions 69 and 70. These insertions are usually associated with changes in the flanking amino acids and with a change to F or Y at position 215. We have proposed that the T215F/Y mutation makes the binding of ATP to HIV-1 RT more effective, which increases the excision of 3-azido-3′-deoxythymidine-5′-monophosphate (AZTMP) in vitro and increases zidovudine (AZT) resistance in vivo. Although the mechanism of AZT resistance involves enhanced excision, resistance to 3TC involves a block to incorporation of the analog. We measured the effects of fingers insertion mutations on the misincorporation and excision of several nucleoside analogs. RT variants with the amino acid insertions in the fingers and T215Y have a decreased level of misincorporation of ddATP and 3TCTP. These mutants also have the ability to excise AZTMP by ATP-dependent pyrophosphorylysis. However, unlike the classic AZT resistance mutations (M41L/D67N/K70R/T215Y or F/K219E or Q), the combination of the amino acid insertions in the fingers and the T215Y mutation allows efficient excision of ddTMP and d4TMP, even when relatively high levels of deoxynucleoside triphosphates are present in the reaction. Although the dideoxynucleoside analogs of other nucleosides were excised more slowly than AZTMP, ddTMP, and d4TMP, the mutants with the fingers insertion and T215Y excised all of the nucleoside analogs that were tested more efficiently than wild-type RT or a mutant RT carrying the classical AZT resistance mutations. In the ternary complex (RT/template-primer/dNTP), the presence of the bound dNTP prevents the end of the primer from gaining access to the nucleotide binding site (N site) where excision occurs. Gel shift analysis showed that the amino acid insertions in the fingers destabilized the ternary complex compared to wild-type HIV-1 RT. If the ternary complex is unstable, the end of the primer can gain access to the N site and excision can occur. This could explain the enhanced excision of the nucleoside analogs.


1994 ◽  
Vol 5 (1) ◽  
pp. 51-55 ◽  
Author(s):  
G. Antonelli ◽  
F. Dianzani ◽  
D. Bellarosa ◽  
O. Turriziani ◽  
E. Riva ◽  
...  

Both 3′-azido-3′-deoxythymidine (AZT) and 2′,3′-dideoxynosine (ddl) strongly inhibit the replication of human immunodeficiency virus type 1 (HIV-1). Here, it is shown that combination of AZT and ddl at concentrations that are readily achievable in vivo synergistically inhibit HIV-1 replication in C8166 cells and peripheral blood mononuclear cells. The synergism is significant even when the effect of AZT and ddl alone was negligible. Our findings show that AZT-resistance is less likely to occur when a combination of AZT and ddl is used. Particularly, generation of AZT-resistant strains by in vitro selection is prevented, or delayed, by the combination of AZT plus ddl. Taken together these observations provide a rationale for combination of AZT and ddl in the therapy of AIDS patients.


2000 ◽  
Vol 38 (11) ◽  
pp. 3919-3925 ◽  
Author(s):  
Laurence Vergne ◽  
Martine Peeters ◽  
Eitel Mpoudi-Ngole ◽  
Anke Bourgeois ◽  
Florian Liegeois ◽  
...  

Most human immunodeficiency virus (HIV) drug susceptibility studies have involved subtype B strains. Little information on the impact of viral diversity on natural susceptibility to antiretroviral drugs has been reported. However, the prevalence of non-subtype-B (non-B) HIV type 1 (HIV-1) strains continues to increase in industrialized countries, and antiretroviral treatments have recently become available in certain developing countries where non-B subtypes predominate. We sequenced the protease and reverse transcriptase (RT) genes of 142 HIV-1 isolates from antiretroviral-naive patients: 4 belonged to group O and 138 belonged to group M (9 subtype A, 13 subtype B, 2 subtype C, 5 subtype D, 2 subtype F1, 9 subtype F2, 4 subtype G, 5 subtype J, 2 subtype K, 3 subtype CRF01-AE, 67 subtype CRF02-AG, and 17 unclassified isolates). No major mutations associated with resistance to nucleoside reverse transcriptase inhibitors (NRTIs) or protease inhibitors were detected. Major mutations linked to resistance to non-NRTI agents were detected in all group O isolates (A98G and Y181C) and in one subtype J virus (V108I). In contrast, many accessory mutations were found, especially in the protease gene. Only 5.6% of the 142 strains, all belonging to subtype B or D, had no mutations in the protease gene. Sixty percent had one mutation, 22.5% had two mutations, 9.8% had three mutations, and 2.1% (all group O strains) had four mutations. In order of decreasing frequency, the following mutations were identified in the protease gene: M36I (86.6%), L10I/V (26%), L63P (12.6%), K20M/R (11.2%), V77I (5.6%), A71V (2.8%), L33F (0.7%), and M46I (0.7%). R211K, an accessory mutation associated with NRTI resistance, was also observed in 43.6% of the samples. Phenotypic and clinical studies are now required to determine whether multidrug-resistant viruses emerge more rapidly during antiretroviral therapy when minor resistance-conferring mutations are present before treatment initiation.


Sign in / Sign up

Export Citation Format

Share Document