scholarly journals An N-Terminal Amphipathic Helix in Hepatitis C Virus (HCV) NS4B Mediates Membrane Association, Correct Localization of Replication Complex Proteins, and HCV RNA Replication

2004 ◽  
Vol 78 (20) ◽  
pp. 11393-11400 ◽  
Author(s):  
Menashe Elazar ◽  
Ping Liu ◽  
Charles M. Rice ◽  
Jeffrey S. Glenn

ABSTRACT Like other positive-strand RNA viruses, hepatitis C virus (HCV) is believed to replicate its RNA in association with host cell cytoplasmic membranes. Because of its association with such membranes, NS4B, one of the virus's nonstructural proteins, may play an important role in this process, although the mechanistic details are not well understood. We identified a putative N-terminal amphipathic helix (AH) in NS4B that mediates membrane association. Introduction of site-directed mutations designed to disrupt the hydrophobic face of the AH abolishes the AH's ability to mediate membrane association. An AH in NS4B is conserved across HCV isolates. Completely disrupting the amphipathic nature of NS4B's N-terminal helix abolished HCV RNA replication, whereas partial disruption resulted in an intermediate level of replication. Finally, immunofluorescence studies revealed that HCV replication complex components were mislocalized in the AH-disrupted mutant. These results identify a key membrane-targeting domain which can form the basis for developing novel antiviral strategies.

2005 ◽  
Vol 79 (2) ◽  
pp. 896-909 ◽  
Author(s):  
Nicole Appel ◽  
Ulrike Herian ◽  
Ralf Bartenschlager

ABSTRACT Studies of Hepatitis C virus (HCV) RNA replication have become possible with the development of subgenomic replicons. This system allows the functional analysis of the essential components of the viral replication complex, which so far are poorly defined. In the present study we wanted to investigate whether lethal mutations in HCV nonstructural genes can be rescued by trans-complementation. Therefore, a series of replicon RNAs carrying mutations in NS3, NS4B, NS5A, and NS5B that abolish replication were transfected into Huh-7 hepatoma cells harboring autonomously replicating helper RNAs. Similar to data described for the Bovine viral diarrhea virus (C. W. Grassmann, O. Isken, N. Tautz, and S. E. Behrens, J. Virol. 75:7791-7802, 2001), we found that only NS5A mutants could be efficiently rescued. There was no evidence for RNA recombination between helper and mutant RNAs, and we did not observe reversions in the transfected mutants. Furthermore, we established a transient complementation assay based on the cotransfection of helper and mutant RNAs. Using this assay, we extended our results and demonstrated that (i) inactivating NS5A mutations affecting the amino-terminal amphipathic helix cannot be complemented in trans; (ii) replication of the helper RNA is not necessary to allow efficient trans-complementation; and (iii) the minimal sequence required for trans-complementation of lethal NS5A mutations is NS3 to -5A, whereas NS5A expressed alone does not restore RNA replication. In summary, our results provide the first insight into the functional organization of the HCV replication complex.


2004 ◽  
Vol 78 (7) ◽  
pp. 3480-3488 ◽  
Author(s):  
Lu Gao ◽  
Hideki Aizaki ◽  
Jian-Wen He ◽  
Michael M. C. Lai

ABSTRACT The lipid raft membrane has been shown to be the site of hepatitis C virus (HCV) RNA replication. The mechanism of formation of the replication complex is not clear. We show here that the formation of the HCV RNA replication complex on lipid raft (detergent-resistant membranes) requires interactions among the HCV nonstructural (NS) proteins and may be initiated by the precursor of NS4B, which has the intrinsic property of anchoring to lipid raft membrane. In hepatocyte cell lines containing an HCV RNA replicon, most of the other NS proteins, including NS5A, NS5B, and NS3, were also localized to the detergent-resistant membranes. However, when individually expressed, only NS4B was associated exclusively with lipid raft. In contrast, NS5B and NS3 were localized to detergent-sensitive membrane and cytosolic fractions, respectively. NS5A was localized to both detergent-sensitive and -resistant membrane fractions. Furthermore, we show that a cellular vesicle membrane transport protein named hVAP-33 (the human homologue of the 33-kDa vesicle-associated membrane protein-associated protein), which binds to both NS5A and NS5B, plays a critical role in the formation of HCV replication complex. The hVAP-33 protein is partially associated with the detergent-resistant membrane fraction. The expression of dominant-negative mutants and small interfering RNA of hVAP-33 in HCV replicon cells resulted in the relocation of NS5B from detergent-resistant to detergent-sensitive membranes. Correspondingly, the amounts of both HCV RNA and proteins in the cells were reduced, indicating that hVAP-33 is critical for the formation of HCV replication complex and RNA replication. These results indicate that protein-protein interactions among the various HCV NS proteins and hVAP-33 are important for the formation of HCV replication complex.


2004 ◽  
Vol 78 (21) ◽  
pp. 12085-12089 ◽  
Author(s):  
Matthew J. Evans ◽  
Charles M. Rice ◽  
Stephen P. Goff

ABSTRACT To investigate interactions between hepatitis C virus (HCV) RNA replication complexes, a system was developed to simultaneously select different HCV subgenomic replicons within the same cell. Transcomplementation of defective replicons was not observed, suggesting an isolated and independent nature of the HCV RNA replication complex. In contrast, a high level of competition between replicons was observed, such that the presence and increased fitness of one replicon reduced the capacity of a second one to stably replicate. These results suggest that at least one factor in Huh7 cells required for HCV RNA replication is limiting and saturable.


2003 ◽  
Vol 84 (10) ◽  
pp. 2761-2769 ◽  
Author(s):  
Nazira El-Hage ◽  
Guangxiang Luo

Biochemical studies revealed that nonstructural proteins of hepatitis C virus (HCV) interacted with each other and were associated with intracellular membranes. The goals of this study were to determine whether nonstructural viral proteins are colocalized at specific intracellular sites where HCV RNA is replicated and to identify the virus components of the HCV replication complex (RC). Immunofluorescence and subcellular fractionation studies were performed to determine the intracellular colocalization of nonstructural HCV proteins and the replicating RNA in a human hepatoma cell line, Huh7, in which a subgenomic HCV RNA was replicated persistently. The replicating HCV RNA was labelled with 5-bromouridine 5′-triphosphate (BrUTP). Results show that each of the nonstructural HCV proteins was colocalized predominantly with the newly synthesized HCV RNA labelled with BrUTP and an endoplasmic reticulum (ER) protein, calnexin. Consistent with these findings, subcellular fractionation and Western blot analyses revealed that the nonstructural HCV proteins were colocalized with HCV RNA mainly in the membrane fractions. Conversely, the viral nonstructural proteins and RNA remained in the soluble fractions upon treatment with detergent, confirming the membrane association of the HCV RC. HCV RNA in the membrane-bound RC was resistant to RNase treatment, whereas it became sensitive to RNases once the membranes were disrupted by treatment with detergent, suggesting that the HCV RC is assembled within membrane structures. Collectively, these findings demonstrate that HCV RNA replication occurs in the perinuclear ER membrane-bound HCV RC, containing nonstructural viral proteins and RNA.


2009 ◽  
Vol 83 (13) ◽  
pp. 6554-6565 ◽  
Author(s):  
Zhe Liu ◽  
Feng Yang ◽  
Jason M. Robotham ◽  
Hengli Tang

ABSTRACT Replication of hepatitis C virus (HCV) RNA occurs on intracellular membranes, and the replication complex (RC) contains viral RNA, nonstructural proteins, and cellular cofactors. We previously demonstrated that cyclophilin A (CyPA) is an essential cofactor for HCV infection and the intracellular target of cyclosporine's anti-HCV effect. Here we investigate the mechanism by which CyPA facilitates HCV replication. Cyclosporine treatment specifically blocked the incorporation of NS5B into the RC without affecting either the total protein level or the membrane association of the protein. Other nonstructural proteins or viral RNAs in the RC were not affected. NS5B from the cyclosporine-resistant replicon was resistant to this disruption of RC incorporation. We also isolated membrane fractions from both naïve and HCV-positive cells and found that CyPA is recruited into membrane fractions in HCV-replicating cells via an interaction with RC-associated NS5B, which is sensitive to cyclosporine treatment. Finally, we introduced point mutations in the prolyl-peptidyl isomerase (PPIase) motif of CyPA and demonstrated a critical role of this motif in HCV replication in cDNA rescue experiments. We propose a model in which the incorporation of the HCV polymerase into the RC depends on its interaction with a cellular chaperone protein and in which cyclosporine inhibits HCV replication by blocking this critical interaction and the PPIase activity of CyPA. Our results provide a mechanism of action for the cyclosporine-mediated inhibition of HCV and identify a critical role of CyPA's PPIase activity in the proper assembly and function of the HCV RC.


2016 ◽  
Vol 90 (16) ◽  
pp. 7205-7218 ◽  
Author(s):  
Avik Biswas ◽  
Jason Treadaway ◽  
Timothy L. Tellinghuisen

ABSTRACTThe hepatitis C virus NS5A protein is tethered to cellular membranes via an amphipathic amino-terminal helix that is inserted in-plane into the outer endoplasmic reticulum (ER)-derived membrane leaflet. The charged face of the helix faces the cytoplasm and may contribute to interactions involved in replicase assembly and function. Using an aggressive charge flip mutagenesis strategy, we identified a number of essential residues for replication on the charged face of the NS5A anchor and identified a double charge face mutant that is lethal for RNA replication but generates suppressor mutations in the carboxy-terminal helix of the NS4B protein. This suppressor restores RNA replication of the NS5A helix double flip mutant (D1979K/D1982K) and, interestingly, seems to function by restoring the proper localization of NS5A to the viral replicase. These data add to our understanding of the complex organization and assembly of the viral replicase via NS4B-NS5A interactions.IMPORTANCEInformation about the functional role of the cytosolic face of the NS5A anchoring helix remains obscure. In this study, we show that while the hydrophobic face of the NS5A anchor helix mediates membrane association, the polar cytosolic face of the helix plays a key role during hepatitis C virus (HCV) replication by mediating the interaction of NS5A with other HCV nonstructural proteins via NS4B. Such an interaction determines the subcellular localization of NS5A by engaging NS5A in the HCV replication process during the formation of a functional HCV replication complex. Thus, collectively, it can be stated that the findings in the present study provide further information about the interactions between the HCV nonstructural proteins during HCV RNA replication and provide a platform to gain more insights about the molecular architecture of HCV replication complexes.


2006 ◽  
Vol 87 (7) ◽  
pp. 1935-1945 ◽  
Author(s):  
Yuki Nomura-Takigawa ◽  
Motoko Nagano-Fujii ◽  
Lin Deng ◽  
Sohei Kitazawa ◽  
Satoshi Ishido ◽  
...  

Non-structural protein 4A (NS4A) of Hepatitis C virus (HCV) functions as a cofactor for NS3 by forming a complex with it to augment its enzymic activities. NS4A also forms a complex with other HCV proteins, such as NS4B/NS5A, to facilitate the formation of the viral RNA replication complex on the endoplasmic reticulum (ER) membrane. In addition to its essential role in HCV replication, NS4A is thought to be involved in viral pathogenesis by affecting cellular functions. In this study, it was demonstrated that NS4A was localized not only on the ER, but also on mitochondria when expressed either alone or together with NS3 in the form of the NS3/4A polyprotein and in the context of HCV RNA replication in Huh7 cells harbouring an HCV RNA replicon. Moreover, NS4A expression altered the intracellular distribution of mitochondria significantly and caused mitochondrial damage, as evidenced by the collapsed mitochondrial transmembrane potential and release of cytochrome c into the cytoplasm, which led ultimately to induction of apoptosis through activation of caspase-3, but not caspase-8. Consistently, Huh7 cells expressing NS3/4A and those harbouring an HCV RNA replicon were shown to be more prone to undergoing actinomycin D-induced, mitochondria-mediated apoptosis, compared with the control Huh7 cells. Taken together, these results suggest the possibility that HCV exerts cytopathic effect (CPE) on the infected cells under certain conditions and that NS4A is responsible, at least in part, for the conditional CPE in HCV-infected cells.


2004 ◽  
Vol 78 (23) ◽  
pp. 13278-13284 ◽  
Author(s):  
Darius Moradpour ◽  
Volker Brass ◽  
Elke Bieck ◽  
Peter Friebe ◽  
Rainer Gosert ◽  
...  

ABSTRACT The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), belongs to a class of integral membrane proteins termed tail-anchored proteins. Its membrane association is mediated by the C-terminal 21 amino acid residues, which are dispensable for RdRp activity in vitro. For this study, we investigated the role of this domain, termed the insertion sequence, in HCV RNA replication in cells. Based on a structural model and the amino acid conservation among different HCV isolates, we designed a panel of insertion sequence mutants and analyzed their membrane association and RNA replication. Subgenomic replicons with a duplication of an essential cis-acting replication element overlapping the sequence that encodes the C-terminal domain of NS5B were used to unequivocally distinguish RNA versus protein effects of these mutations. Our results demonstrate that the membrane association of the RdRp is essential for HCV RNA replication. Interestingly, certain amino acid substitutions within the insertion sequence abolished RNA replication without affecting membrane association, indicating that the C-terminal domain of NS5B has functions beyond serving as a membrane anchor and that it may be involved in critical intramembrane protein-protein interactions. These results have implications for the functional architecture of the HCV replication complex and provide new insights into the expanding spectrum of tail-anchored proteins.


2010 ◽  
Vol 84 (24) ◽  
pp. 12529-12537 ◽  
Author(s):  
Jérôme Gouttenoire ◽  
Philippe Roingeard ◽  
François Penin ◽  
Darius Moradpour

ABSTRACT Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. It induces a specific membrane rearrangement, designated membranous web, that serves as a scaffold for the HCV replication complex. However, the mechanisms underlying membranous web formation are poorly understood. Based on fluorescence resonance energy transfer (FRET) and confirmatory coimmunoprecipitation analyses, we provide evidence for an oligomerization of NS4B in the membrane environment of intact cells. Several conserved determinants were found to be involved in NS4B oligomerization, through homotypic and heterotypic interactions. N-terminal amphipathic α-helix AH2, comprising amino acids 42 to 66, was identified as a major determinant for NS4B oligomerization. Mutations that affected the oligomerization of NS4B disrupted membranous web formation and HCV RNA replication, implying that oligomerization of NS4B is required for the creation of a functional replication complex. These findings enhance our understanding of the functional architecture of the HCV replication complex and may provide new angles for therapeutic intervention. At the same time, they expand the list of positive-strand RNA virus replicase components acting as oligomers.


Sign in / Sign up

Export Citation Format

Share Document