scholarly journals Insertion of a Classical Nuclear Import Signal into the Matrix Domain of the Rous Sarcoma Virus Gag Protein Interferes with Virus Replication

2004 ◽  
Vol 78 (24) ◽  
pp. 13534-13542 ◽  
Author(s):  
Rachel A. Garbitt ◽  
Karen R. Bone ◽  
Leslie J. Parent

ABSTRACT The Rous sarcoma virus Gag protein undergoes transient nuclear trafficking during virus assembly. Nuclear import is mediated by a nuclear targeting sequence within the MA domain. To gain insight into the role of nuclear transport in replication, we investigated whether addition of a “classical ” nuclear localization signal (NLS) in Gag would affect virus assembly or infectivity. A bipartite NLS derived from nucleoplasmin was inserted into a region of the MA domain of Gag that is dispensable for budding and infectivity. Gag proteins bearing the nucleoplasmin NLS insertion displayed an assembly defect. Mutant virus particles (RC.V8.NLS) were not infectious, although they were indistinguishable from wild-type virions in Gag, Gag-Pol, Env, and genomic RNA incorporation and Gag protein processing. Unexpectedly, postinfection viral DNA synthesis was also normal, as similar amounts of two-long-terminal-repeat junction molecules were detected for RC.V8.NLS and wild type, suggesting that the replication block occurred after nuclear entry of proviral DNA. Phenotypically revertant viruses arose after continued passage in culture, and sequence analysis revealed that the nucleoplasmin NLS coding sequence was deleted from the gag gene. To determine whether the nuclear targeting activity of the nucleoplasmin sequence was responsible for the infectivity defect, two critical basic amino acids in the NLS were altered. This virus (RC.V8.KR/AA) had restored infectivity, and the MA.KR/AA protein showed reduced nuclear localization, comparable to the wild-type MA protein. These data demonstrate that addition of a second NLS, which might direct MA and/or Gag into the nucleus by an alternate import pathway, is not compatible with productive virus infection.

2009 ◽  
Vol 83 (13) ◽  
pp. 6790-6797 ◽  
Author(s):  
Rachel Garbitt-Hirst ◽  
Scott P. Kenney ◽  
Leslie J. Parent

ABSTRACT The packaging of retroviral genomic RNA (gRNA) requires cis-acting elements within the RNA and trans-acting elements within the Gag polyprotein. The packaging signal ψ, at the 5′ end of the viral gRNA, binds to Gag through interactions with basic residues and Cys-His box RNA-binding motifs in the nucleocapsid. Although specific interactions between Gag and gRNA have been demonstrated previously, where and when they occur is not well understood. We discovered that the Rous sarcoma virus (RSV) Gag protein transiently localizes to the nucleus, although the roles of Gag nuclear trafficking in virus replication have not been fully elucidated. A mutant of RSV (Myr1E) with enhanced plasma membrane targeting of Gag fails to undergo nuclear trafficking and also incorporates reduced levels of gRNA into virus particles compared to those in wild-type particles. Based on these results, we hypothesized that Gag nuclear entry might facilitate gRNA packaging. To test this idea by using a gain-of-function genetic approach, a bipartite nuclear localization signal (NLS) derived from the nucleoplasmin protein was inserted into the Myr1E Gag sequence (generating mutant Myr1E.NLS) in an attempt to restore nuclear trafficking. Here, we report that the inserted NLS enhanced the nuclear localization of Myr1E.NLS Gag compared to that of Myr1E Gag. Also, the NLS sequence restored gRNA packaging to nearly wild-type levels in viruses containing Myr1E.NLS Gag, providing genetic evidence linking nuclear trafficking of the retroviral Gag protein with gRNA incorporation.


2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Breanna L. Rice ◽  
Matthew S. Stake ◽  
Leslie J. Parent

ABSTRACT Retroviral Gag polyproteins orchestrate the assembly and release of nascent virus particles from the plasma membranes of infected cells. Although it was traditionally thought that Gag proteins trafficked directly from the cytosol to the plasma membrane, we discovered that the oncogenic avian alpharetrovirus Rous sarcoma virus (RSV) Gag protein undergoes transient nucleocytoplasmic transport as an intrinsic step in virus assembly. Using a genetic approach in yeast, we identified three karyopherins that engage the two independent nuclear localization signals (NLSs) in Gag. The primary NLS is in the nucleocapsid (NC) domain of Gag and binds directly to importin-α, which recruits importin-β to mediate nuclear entry. The second NLS (TNPO3), which resides in the matrix (MA) domain, is dependent on importin-11 and transportin-3 (TNPO3), which are known as MTR10p and Kap120p in yeast, although it is not clear whether these import factors are independent or additive. The functions of importin-α/importin-β and importin-11 have been verified in avian cells, whereas the role of TNPO3 has not been studied. In this report, we demonstrate that TNPO3 directly binds to Gag and mediates its nuclear entry. To our surprise, this interaction did not require the cargo-binding domain (CBD) of TNPO3, which typically mediates nuclear entry for other binding partners of TNPO3, including SR domain-containing splicing factors and tRNAs that reenter the nucleus. These results suggest that RSV hijacks this host nuclear import pathway using a unique mechanism, potentially allowing other cargo to simultaneously bind TNPO3. IMPORTANCE RSV Gag nuclear entry is facilitated using three distinct host import factors that interact with nuclear localization signals in the Gag MA and NC domains. Here, we show that the MA region is required for nuclear import of Gag through the TNPO3 pathway. Gag nuclear entry does not require the CBD of TNPO3. Understanding the molecular basis for TNPO3-mediated nuclear trafficking of the RSV Gag protein may lead to a deeper appreciation for whether different import factors play distinct roles in retrovirus replication.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Rebecca J. Kaddis Maldonado ◽  
Breanna Rice ◽  
Eunice C. Chen ◽  
Kevin M. Tuffy ◽  
Estelle F. Chiari ◽  
...  

ABSTRACT Packaging of genomic RNA (gRNA) by retroviruses is essential for infectivity, yet the subcellular site of the initial interaction between the Gag polyprotein and gRNA remains poorly defined. Because retroviral particles are released from the plasma membrane, it was previously thought that Gag proteins initially bound to gRNA in the cytoplasm or at the plasma membrane. However, the Gag protein of the avian retrovirus Rous sarcoma virus (RSV) undergoes active nuclear trafficking, which is required for efficient gRNA encapsidation (L. Z. Scheifele, R. A. Garbitt, J. D. Rhoads, and L. J. Parent, Proc Natl Acad Sci U S A 99:3944–3949, 2002, https://doi.org/10.1073/pnas.062652199; R. Garbitt-Hirst, S. P. Kenney, and L. J. Parent, J Virol 83:6790–6797, 2009, https://doi.org/10.1128/JVI.00101-09). These results raise the intriguing possibility that the primary contact between Gag and gRNA might occur in the nucleus. To examine this possibility, we created a RSV proviral construct that includes 24 tandem repeats of MS2 RNA stem-loops, making it possible to track RSV viral RNA (vRNA) in live cells in which a fluorophore-conjugated MS2 coat protein is coexpressed. Using confocal microscopy, we observed that both wild-type Gag and a nuclear export mutant (Gag.L219A) colocalized with vRNA in the nucleus. In live-cell time-lapse images, the wild-type Gag protein trafficked together with vRNA as a single ribonucleoprotein (RNP) complex in the nucleoplasm near the nuclear periphery, appearing to traverse the nuclear envelope into the cytoplasm. Furthermore, biophysical imaging methods suggest that Gag and the unspliced vRNA physically interact in the nucleus. Taken together, these data suggest that RSV Gag binds unspliced vRNA to export it from the nucleus, possibly for packaging into virions as the viral genome. IMPORTANCE Retroviruses cause severe diseases in animals and humans, including cancer and acquired immunodeficiency syndromes. To propagate infection, retroviruses assemble new virus particles that contain viral proteins and unspliced vRNA to use as gRNA. Despite the critical requirement for gRNA packaging, the molecular mechanisms governing the identification and selection of gRNA by the Gag protein remain poorly understood. In this report, we demonstrate that the Rous sarcoma virus (RSV) Gag protein colocalizes with unspliced vRNA in the nucleus in the interchromatin space. Using live-cell confocal imaging, RSV Gag and unspliced vRNA were observed to move together from inside the nucleus across the nuclear envelope, suggesting that the Gag-gRNA complex initially forms in the nucleus and undergoes nuclear export into the cytoplasm as a viral ribonucleoprotein (vRNP) complex.


2020 ◽  
Author(s):  
Breanna L. Rice ◽  
Matthew S. Stake ◽  
Leslie J. Parent

AbstractRetroviral Gag polyproteins orchestrate the assembly and release of nascent virus particles from the plasma membranes of infected cells. Although it was traditionally thought that Gag proteins trafficked directly from the cytosol to the plasma membrane, we discovered that the oncogenic avian alpharetrovirus Rous sarcoma virus (RSV) Gag protein undergoes transient nucleocytoplasmic transport as an intrinsic step in virus assembly. Using a genetic approach in yeast, we identified three karyopherins that engage the two independent nuclear localization signals (NLS) in Gag. The primary NLS is in the nucleocapsid (NC) domain of Gag and binds directly to importin-α, which recruits importin-β to mediate nuclear entry. The second NLS, which resides in the matrix (MA) domain, is dependent on importin-11 and transportin-3 (TNPO3), known as MTR10p and Kap120p in yeast, although it is not clear whether these import factors are independent or additive. The functionality of importin α/β and importin-11 has been verified in avian cells, whereas the role of TNPO3 has not been studied. In this report, we demonstrate that TNPO3 mediates nuclear entry of Gag and directly binds to Gag. To our surprise, this interaction did not require the cargo-binding domain of TNPO3, which typically mediates nuclear entry for other binding partners of TNPO3 including SR-domain containing splicing factors and tRNAs that re-enter the nucleus. These results suggest that RSV hijacks the host nuclear import pathway using a unique mechanism, potentially allowing other cargo to bind TNPO3 simultaneously.ImportanceRSV Gag nuclear entry is facilitated using three distinct host import factors that interact with nuclear localization signals in the Gag MA and NC domains. Here we show that the MA region is required for nuclear import of Gag through the TNPO3 pathway. Gag nuclear entry does not require the cargo binding domain of TNPO3. Understanding the molecular basis for TNPO3-mediated nuclear trafficking of the RSV Gag protein may lead to a deeper appreciation for whether different import factors play distinct roles in retrovirus replication.


1991 ◽  
Vol 11 (5) ◽  
pp. 2760-2768 ◽  
Author(s):  
G F Barker ◽  
K Beemon

The intracellular accumulation of the unspliced RNA of Rous sarcoma virus was decreased when translation was prematurely terminated by the introduction of nonsense codons within its 5' proximal gene, the gag gene. In contrast, the levels of spliced viral RNAs were not affected in our transient expression assays in chicken cells. Experiments using the transcription inhibitor dactinomycin showed that mutant unspliced RNAs were degraded more rapidly than wild-type RNA. Furthermore, mutant RNAs could be partially stabilized by coexpression of wild-type gag proteins in trans; however, intact gag proteins were not required to maintain the stability of RNAs which did not contain premature termination codons. Thus, termination codons seemed to destabilize the RNA not because of their effect on gag protein function but instead because they disrupted the process of translating the gag region of the RNA. Analysis of double-mutant constructs containing both deletions and termination codons within the gag gene also suggested that the stability of the unspliced RNA was affected by a cis-acting interaction between the RNA and ribosomes.


1991 ◽  
Vol 11 (5) ◽  
pp. 2760-2768
Author(s):  
G F Barker ◽  
K Beemon

The intracellular accumulation of the unspliced RNA of Rous sarcoma virus was decreased when translation was prematurely terminated by the introduction of nonsense codons within its 5' proximal gene, the gag gene. In contrast, the levels of spliced viral RNAs were not affected in our transient expression assays in chicken cells. Experiments using the transcription inhibitor dactinomycin showed that mutant unspliced RNAs were degraded more rapidly than wild-type RNA. Furthermore, mutant RNAs could be partially stabilized by coexpression of wild-type gag proteins in trans; however, intact gag proteins were not required to maintain the stability of RNAs which did not contain premature termination codons. Thus, termination codons seemed to destabilize the RNA not because of their effect on gag protein function but instead because they disrupted the process of translating the gag region of the RNA. Analysis of double-mutant constructs containing both deletions and termination codons within the gag gene also suggested that the stability of the unspliced RNA was affected by a cis-acting interaction between the RNA and ribosomes.


Virology ◽  
1992 ◽  
Vol 189 (2) ◽  
pp. 556-567 ◽  
Author(s):  
Philippe Dezélée ◽  
Jean Vianney Barnier ◽  
Annie Hampe ◽  
Danielle Laugier ◽  
Maria Marx ◽  
...  

1984 ◽  
Vol 4 (3) ◽  
pp. 454-467 ◽  
Author(s):  
J G Krueger ◽  
E A Garber ◽  
S S Chin ◽  
H Hanafusa ◽  
A R Goldberg

We have shown previously that the membrane association of the src proteins of recovered avian sarcoma viruses (rASVs) 1702 (56 kilodaltons) and 157 (62.5 kilodaltons), whose size variations occur within 8 kilodaltons of the amino terminus, is salt sensitive and that, in isotonic salt, these src proteins fractionate as soluble cytoplasmic proteins. In contrast, wild-type Rous sarcoma virus pp60src behaves as an integral plasma membrane protein in cellular fractionation studies and shows prominent membrane interaction by immunofluorescence microscopy. In this study we have examined the distribution of these size-variant src proteins between free and complexed forms, their subcellular localization by immunofluorescence microscopy, and their ability to effect several transformation-related cell properties. Glycerol gradient sedimentation of extracts from cells infected either with rASV 1702 or rASV 157 showed that soluble src proteins of these viruses were distributed between free and complexed forms as has been demonstrated for wild-type Rous sarcoma virus pp60src. Pulse-chase studies with rASV pp60src showed that, like wild-type Rous sarcoma virus pp60src, it was transiently found in a complexed form. Indirect immunofluorescence showed that size-variant pp60src proteins are localized in adhesion plaques and regions of cell-to-cell contact in rASV 1702- or 157-infected cells. This result is in contrast with the generalized localization of pp60src in plasma membranes of control rASV-infected cells which produce pp60src. Chicken embryo fibroblasts infected by rASVs 1702 and 157 display a partial-transformation phenotype with respect to (i) transformation-related morphology, (ii) cell surface membrane changes, and (iii) retained extracellular fibronectin. It is possible that the induction of a partial-transformation phenotype may be the result of the unique interaction of the src proteins encoded by these viruses with restricted areas of the plasma membrane.


2001 ◽  
Vol 75 (1) ◽  
pp. 242-250 ◽  
Author(s):  
Tina M. Cairns ◽  
Rebecca C. Craven

ABSTRACT The major structural protein of the retroviral core (CA) contains a conserved sequence motif shared with the CA-like proteins of distantly related transposable elements. The function of this major region of homology (MHR) has not been defined, in part due to the baffling array of phenotypes in mutants of several viruses and the yeast TY3. This report describes new mutations in the CA protein of Rous sarcoma virus (RSV) that were designed to test whether these different phenotypes might indicate distinct functional subdomains in the MHR. A comparison of 25 substitutions at 10 positions in the RSV conserved motif argues against this possibility. Most of the replacements destroyed virus infectivity, although either of two lethal phenotypes was obtained depending on the residue introduced. At most of the positions, one or more replacements (generally the more conservative substitutions) caused a severe replication defect without having any obvious effects on virus assembly, budding, Gag-Pol and genome incorporation, or protein processing. The mutant particles exhibited a defect in endogenous viral DNA synthesis and showed increased sensitivity of the core proteins to detergent, indicating that the mutations interfere with the formation and/or activity of the virion core. The distribution of these mutations across the MHR, with no evidence of clustering, suggests that the entire region is important for a critical postbudding function. In contrast, a second class of lethal substitutions (those that destroyed virus assembly and release) consists of alterations that are expected to cause severe effects on protein structure by disruption either of the hydrophobic core of the CA carboxyl-terminal domain or of the hydrogen bond network that stabilizes the domain. We suggest that this duality of phenotypes is consistent with a role for the MHR in the maturation process that links the two parts of the life cycle.


2001 ◽  
Vol 75 (1) ◽  
pp. 260-268 ◽  
Author(s):  
Rachel A. Garbitt ◽  
Jessica A. Albert ◽  
Michelle D. Kessler ◽  
Leslie J. Parent

ABSTRACT The genomic RNA of retroviruses exists within the virion as a noncovalently linked dimer. Previously, we identified a mutant of the viral matrix (MA) protein of Rous sarcoma virus that disrupts viral RNA dimerization. This mutant, Myr1E, is modified at the N terminus of MA by the addition of 10 amino acids from the Src protein, resulting in the production of particles containing monomeric RNA. Dimerization is reestablished by a single amino acid substitution that abolishes myristylation (Myr1E−). To distinguish between cis andtrans effects involving Myr1E, additional mutations were generated. In Myr1E.cc and Myr1E−.cc, different nucleotides were utilized to encode the same protein as Myr1E and Myr1E−, respectively. The alterations in RNA sequence did not change the properties of the viral mutants. Myr1E.ATG− was constructed so that translation began at the gag AUG, resulting in synthesis of the wild-type Gag protein but maintenance of the src RNA sequence. This mutant had normal infectivity and dimeric RNA, indicating that thesrc sequence did not prevent dimer formation. All of the src-containing RNA sequences formed dimers in vitro. Examination of MA-green fluorescent protein fusion proteins revealed that the wild-type and mutant MA proteins Myr1E.ATG−, Myr1E−, and Myr1E−.cc had distinctly different patterns of subcellular localization compared with Myr1E and Myr1E.cc MA proteins. This finding suggests that proper localization of the MA protein may be required for RNA dimer formation and infectivity. Taken together, these results provide compelling evidence that the genomic RNA dimerization defect is due to a trans-acting effect of the mutant MA proteins.


Sign in / Sign up

Export Citation Format

Share Document