scholarly journals Jaagsiekte Sheep Retrovirus Envelope Efficiently Pseudotypes Human Immunodeficiency Virus Type 1-Based Lentiviral Vectors

2004 ◽  
Vol 78 (5) ◽  
pp. 2642-2647 ◽  
Author(s):  
Shan-Lu Liu ◽  
Christine L. Halbert ◽  
A. Dusty Miller

ABSTRACT Jaagsiekte sheep retrovirus (JSRV) infects lung epithelial cells in sheep, and oncoretroviral vectors bearing JSRV Env can mediate transduction of human cells, suggesting that such vectors might be useful for lung-directed gene therapy. Here we show that JSRV Env can also efficiently pseudotype a human immunodeficiency virus type 1-based lentiviral vector, a more suitable vector for transduction of slowly dividing lung epithelial cells. We created several chimeric Env proteins that, unlike the parental Env, do not transform rodent fibroblasts but are still capable of pseudotyping lentiviral and oncoretroviral vectors.

2009 ◽  
Vol 83 (17) ◽  
pp. 8596-8603 ◽  
Author(s):  
Earl Stoddard ◽  
Houping Ni ◽  
Georgetta Cannon ◽  
Chunhui Zhou ◽  
Neville Kallenbach ◽  
...  

ABSTRACT The human scavenger receptor gp340 has been identified as a binding protein for the human immunodeficiency virus type 1 (HIV-1) envelope that is expressed on the cell surface of female genital tract epithelial cells. This interaction allows such epithelial cells to efficiently transmit infective virus to susceptible targets and maintain viral infectivity for several days. Within the context of vaginal transmission, HIV must first traverse a normally protective mucosa containing a cell barrier to reach the underlying T cells and dendritic cells, which propagate and spread the infection. The mechanism by which HIV-1 can bypass an otherwise healthy cellular barrier remains an important area of study. Here, we demonstrate that genital tract-derived cell lines and primary human endocervical tissue can support direct transcytosis of cell-free virus from the apical to basolateral surfaces. Further, this transport of virus can be blocked through the addition of antibodies or peptides that directly block the interaction of gp340 with the HIV-1 envelope, if added prior to viral pulsing on the apical side of the cell or tissue barrier. Our data support a role for the previously described heparan sulfate moieties in mediating this transcytosis but add gp340 as an important facilitator of HIV-1 transcytosis across genital tract tissue. This study demonstrates that HIV-1 actively traverses the protective barriers of the human genital tract and presents a second mechanism whereby gp340 can promote heterosexual transmission.


2013 ◽  
Vol 9 (11) ◽  
pp. e1003776 ◽  
Author(s):  
Sandeep Gupta ◽  
Johannes S. Gach ◽  
Juan C. Becerra ◽  
Tran B. Phan ◽  
Jeffrey Pudney ◽  
...  

Virology ◽  
2008 ◽  
Vol 370 (2) ◽  
pp. 246-254 ◽  
Author(s):  
Nicolas Chomont ◽  
Hakim Hocini ◽  
Jean-Chrysostome Gody ◽  
Hicham Bouhlal ◽  
Pierre Becquart ◽  
...  

2006 ◽  
Vol 81 (1) ◽  
pp. 395-405 ◽  
Author(s):  
Michael D. Bobardt ◽  
Udayan Chatterji ◽  
Suganya Selvarajah ◽  
Bernadette Van der Schueren ◽  
Guido David ◽  
...  

ABSTRACT Although the transport of human immunodeficiency virus type 1 (HIV-1) through the epithelium is critical for HIV-1 colonization, the mechanisms controlling this process remain obscure. In the present study, we investigated the transcellular migration of HIV-1 as a cell-free virus through primary genital epithelial cells (PGECs). The absence of CD4 on PGECs implicates an unusual entry pathway for HIV-1. We found that syndecans are abundantly expressed on PGECs and promote the initial attachment and subsequent entry of HIV-1 through PGECs. Although CXCR4 and CCR5 do not contribute to HIV-1 attachment, they enhance viral entry and transcytosis through PGECs. Importantly, HIV-1 exploits both syndecans and chemokine receptors to ensure successful cell-free transport through the genital epithelium. HIV-1-syndecan interactions rely on specific residues in the V3 of gp120 and specific sulfations within syndecans. We found no obvious correlation between coreceptor usage and the capacity of the virus to transcytose. Since viruses isolated after sexual transmission are mainly R5 viruses, this suggests that the properties conferring virus replication after transmission are distinct from those conferring cell-free virus transcytosis through the genital epithelium. Although we found that cell-free HIV-1 crosses PGECs as infectious particles, the efficiency of transcytosis is extremely poor (less than 0.02% of the initial inoculum). This demonstrates that the genital epithelium serves as a major barrier against HIV-1. Although one cannot exclude the possibility that limited passage of cell-free HIV-1 transcytosis through an intact genital epithelium occurs in vivo, it is likely that the establishment of infection via cell-free HIV-1 transmigration is a rare event.


1998 ◽  
Vol 72 (7) ◽  
pp. 5852-5861 ◽  
Author(s):  
Maurice Rothe ◽  
Laurent Chêne ◽  
Marie-Thérèse Nugeyre ◽  
Joséphine Braun ◽  
Françoise Barré-Sinoussi ◽  
...  

ABSTRACT We report here that human immunodeficiency virus type 1 (HIV-1)-infected human thymocytes, in the absence of any exogenous stimulus but cocultivated with autologous thymic epithelial cells (TEC), obtained shortly (3 days) after thymus excision produce a high and sustained level of HIV-1 particles. The levels and kinetics of HIV-1 replication were similar for seven distinct viral strains irrespective of their phenotypes and genotypes. Contact of thymocytes with TEC is a critical requirement for optimal viral replication. Rather than an inductive signal resulting from the contact itself, soluble factors produced in the mixed culture are responsible for this effect. Specifically, the synergistic effects of tumor necrosis factor, interleukin-1 (IL-1), IL-6, and granulocyte-macrophage colony-stimulating factor may account by themselves for the high level of HIV-1 replication in thymocytes observed in mixed cultures. In conclusion, the microenvironment generated by TEC-thymocyte interaction might greatly favor optimal HIV-1 replication in the thymus.


2004 ◽  
Vol 48 (10) ◽  
pp. 3834-3844 ◽  
Author(s):  
Charlene S. Dezzutti ◽  
V. Nicole James ◽  
Artur Ramos ◽  
Sharon T. Sullivan ◽  
Aladin Siddig ◽  
...  

ABSTRACT A standardized protocol was used to compare cellular toxicities and anti-human immunodeficiency virus type 1 (HIV-1) activities of candidate microbicides formulated for human use. The microbicides evaluated were cellulose acetate phthalate (CAP), Carraguard, K-Y plus nonoxynol-9 (KY-N9), PRO 2000 (0.5 and 4%), SPL7013 (5%), UC781 (0.1 and 1%), and Vena Gel, along with their accompanying placebos. Products were evaluated for toxicity on cervical and colorectal epithelial cell lines, peripheral blood mononuclear cells (PBMCs), and macrophages (MΦ) by using an ATP release assay, and they were tested for their effect on transepithelial resistance (TER) of polarized epithelial monolayers. Anti-HIV-1 activity was evaluated in assays for transfer of infectious HIV-1 from epithelial cells to activated PBMCs and for PBMC and MΦ infection. CAP, Carraguard, PRO 2000, SPL7013, and UC781 along with their placebos were 20- to 50-fold less toxic than KY-N9 and Vena Gel. None of the nontoxic product concentrations disrupted the TER. Transfer of HIV-1Ba-L from epithelial cells to PBMCs and PBMC and MΦ infection with laboratory-adapted HIV-1Ba-L and HIV-1LAI isolates were inhibited by all products except Carraguard, KY-N9, and Vena Gel. KY-N9, Vena Gel, and Carraguard were not effective in blocking PBMC infection with primary HIV-1A, HIV-1C, and HIV-1CRF01-AE isolates. The concordance of these toxicity results with those previously reported indicates that our protocol may be useful for predicting toxicity in vivo. Moreover, our systematic anti-HIV-1 testing provides a rational basis for making better informed decisions about which products to consider for clinical trials.


2003 ◽  
Vol 187 (10) ◽  
pp. 1522-1533 ◽  
Author(s):  
Susana N. Asin ◽  
Dunja Wildt‐Perinic ◽  
Sarah I. Mason ◽  
Alexandra L. Howell ◽  
Charles R. Wira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document