scholarly journals Internal Point Mutations of the Capsid Modify the Serotype of Rice Yellow Mottle Virus

2005 ◽  
Vol 79 (7) ◽  
pp. 4407-4414 ◽  
Author(s):  
Eugénie Hébrard ◽  
Agnès Pinel-Galzi ◽  
Vincent Catherinot ◽  
Gilles Labesse ◽  
Christophe Brugidou ◽  
...  

ABSTRACT Rice yellow mottle virus is classified in five major serotypes; the molecular diversity of the coat protein (CP) is well established, but the amino acids involved in the recognition by discriminant monoclonal antibodies (MAbs) remain unknown. Reconstruction of a phylogenetic tree and sequence alignment of the CP gene of a sample representative of the continental-large diversity were used to identify 10 serospecific amino acids (i.e., conserved in all isolates belonging to the same serotype and distinct in other serotypes). Positions occupied by serospecific residues were localized on the crystal structure of the CP monomer and on modeled capsomers. Structural, molecular, and serological properties of each serotype were analyzed, and subsequently, hypotheses on the potential role of amino acids in discriminating reactions with antibodies were formulated. The residues 114 and 115 (serospecific of Sr1) and 190 (serospecific of Sr2) were localized on the outer surface of the capsid and might be directly involved in the immunoreactivity with MAb D and MAb A, respectively. In contrast, residues 180 (Sr3) and 178 (Sr5) lay within the inner surface of the capsid. To understand the role of these internal positions in the recognition with the antibodies, two substitutions (T180K and G178D) were introduced in the CP of an infectious clone. These mutations modified the antigenicity with MAb G and MAb E discriminating Sr3 and Sr5, respectively, while the reaction with MAb D remained unaffected. This result suggests an indirect effect of these two internal mutations on local immunostructure while the global structure was maintained.

2014 ◽  
Vol 95 (1) ◽  
pp. 219-224 ◽  
Author(s):  
Nils Poulicard ◽  
Agnès Pinel-Galzi ◽  
Denis Fargette ◽  
Eugénie Hébrard

The adaptation of rice yellow mottle virus (RYMV) to rymv1-mediated resistance has been reported to involve mutations in the viral genome-linked protein (VPg). In this study, we analysed several cases of rymv1-2 resistance breakdown by an isolate with low adaptability. Surprisingly, in these rarely occurring resistance-breaking (RB) genotypes, mutations were detected outside the VPg, in the ORF2a/ORF2b overlapping region. The causal role of three mutations associated with rymv1-2 resistance breakdown was validated via directed mutagenesis of an infectious clone. In resistant plants, these mutations increased viral accumulation as efficiently as suboptimal RB mutations in the VPg. Interestingly, these mutations are located in a highly conserved, but unfolded, domain. Altogether, our results indicate that under strong genetic constraints, a priori unfit genotypes can follow alternative mutational pathways, i.e. outside the VPg, to overcome rymv1-2 resistance.


2006 ◽  
Vol 87 (5) ◽  
pp. 1369-1373 ◽  
Author(s):  
Eugénie Hébrard ◽  
Agnès Pinel-Galzi ◽  
Anne Bersoult ◽  
Christelle Siré ◽  
Denis Fargette

The recessive gene rymv-1, responsible for the high resistance of Oryza sativa ‘Gigante’ to Rice yellow mottle virus (genus Sobemovirus), was overcome by the variant CI4*, which emerged after serial inoculations of the non-resistance-breaking (nRB) isolate CI4. By comparison of the full-length sequences of CI4 and CI4*, a non-synonymous mutation was identified at position 1729, localized in the putative VPg domain, and an assay was developed based on this single-nucleotide polymorphism. The mutation G1729T was detected as early as the first passage in resistant plants and was found in all subsequent passages. Neither reversion nor any additional mutation was observed. The substitution G1729T, introduced by mutagenesis into the VPg of an nRB infectious clone, was sufficient to induce symptoms in uninoculated leaves of O. sativa ‘Gigante’. This is the first evidence that VPg is a virulence factor in plants with recessive resistance against viruses outside the family Potyviridae.


2018 ◽  
Vol 108 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Eugénie Hébrard ◽  
Agnès Pinel-Galzi ◽  
Aderonke Oludare ◽  
Nils Poulicard ◽  
Jamel Aribi ◽  
...  

Rice yellow mottle virus (RYMV) causes high losses to rice production in Africa. Several sources of varietal high resistance are available but the emergence of virulent pathotypes that are able to overcome one or two resistance alleles can sometimes occur. Both resistance spectra and viral adaptability have to be taken into account to develop sustainable rice breeding strategies against RYMV. In this study, we extended previous resistance spectrum analyses by testing the rymv1-4 and rymv1-5 alleles that are carried by the rice accessions Tog5438 and Tog5674, respectively, against isolates that are representative of RYMV genetic and pathogenic diversity. Our study revealed a hypervirulent pathotype, named thereafter pathotype T′, that is able to overcome all known sources of high resistance. This pathotype, which is spatially localized in West-Central Africa, appears to be more abundant than previously suspected. To better understand the adaptive processes of pathotype T′, molecular determinants of resistance breakdown were identified via Sanger sequencing and validated through directed mutagenesis of an infectious clone. These analyses confirmed the key role of convergent nonsynonymous substitutions in the central part of the viral genome-linked protein to overcome RYMV1-mediated resistance. In addition, deep-sequencing analyses revealed that resistance breakdown does not always coincide with fixed mutations. Actually, virulence mutations that are present in a small proportion of the virus population can be sufficient for resistance breakdown. Considering the spatial distribution of RYMV strains in Africa and their ability to overcome the RYMV resistance genes and alleles, we established a resistance-breaking risk map to optimize strategies for the deployment of sustainable and resistant rice lines in Africa.


2010 ◽  
Vol 61 (3) ◽  
pp. 371-382 ◽  
Author(s):  
Séverine Lacombe ◽  
Martine Bangratz ◽  
Florence Vignols ◽  
Christophe Brugidou

2003 ◽  
Vol 148 (9) ◽  
pp. 1721-1733 ◽  
Author(s):  
A. Pinel ◽  
Z. Abubakar ◽  
O. Traor� ◽  
G. Konat� ◽  
D. Fargette

Virology ◽  
1995 ◽  
Vol 206 (1) ◽  
pp. 108-115 ◽  
Author(s):  
C. Brugidou ◽  
C. Holt ◽  
M. Ngon A Yassi ◽  
S. Zhang ◽  
R. Beachy ◽  
...  

Plant Disease ◽  
1999 ◽  
Vol 83 (10) ◽  
pp. 931-935 ◽  
Author(s):  
M. N. Ndjiondjop ◽  
L. Albar ◽  
D. Fargette ◽  
C. Fauquet ◽  
A. Ghesquière

Three cultivars of Oryza sativa (IR64, Azucena, and Gigante) and four cultivars of O. glaberrima (Tog5681, Tog5673, CG14, and SG329) were evaluated for their resistance to two isolates of rice yellow mottle virus (RYMV) by enzyme-linked immunosorbent assay (ELISA) and symptomatology. Cultivars Tog5681 and Gigante were highly resistant, and no symptoms were observed when either virus isolate was inoculated at 10 or 20 days postgermination and assayed by ELISA at 7, 14, 22, 35, 50, or 64 days postinoculation. Azucena showed a partial resistance, whereas the other cultivars were susceptible. Symptom appearance was associated with increase in ELISA absorbance in the systemically infected leaves. The best discrimination among the cultivars occurred when the plants were inoculated at 10 days postgermination. Crosses were made between the highly resistant (Gigante and Tog5681) and the susceptible (IR64) cultivars to determine the genetic basis of resistance to RYMV. Evaluation of F1 hybrids and interspecific progenies, as well as the segregation of resistance in F2 and F3 lines of the IR64 × Gigante cross, provided results consistent with the presence of a single recessive resistance gene common to Tog5681 and Gigante.


2018 ◽  
Vol 6 (8) ◽  
Author(s):  
Antony Kigaru Adego ◽  
Nils Poulicard ◽  
Agnès Pinel-Galzi ◽  
Benard Mukoye ◽  
Denis Fargette ◽  
...  

ABSTRACT Five isolates of Rice yellow mottle virus from western Kenya were fully sequenced. One isolate of strain S4lv had been collected in 1966. Two isolates belonged to the emerging strain S4ug recently described in Uganda. Two isolates collected in 2012 are putative recombinants between the S4lv and S4ug strains.


Sign in / Sign up

Export Citation Format

Share Document