scholarly journals Human Immunodeficiency Virus (HIV) gp41 Escape Mutants: Cross-Resistance to Peptide Inhibitors of HIV Fusion and Altered Receptor Activation of gp120

2005 ◽  
Vol 79 (8) ◽  
pp. 4774-4781 ◽  
Author(s):  
Emmanuel Desmezieres ◽  
Nidhi Gupta ◽  
Russell Vassell ◽  
Yong He ◽  
Keith Peden ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV) infects cells by fusing with cellular membranes. Fusion occurs when the envelope glycoprotein (Env) undergoes conformational changes while binding to cellular receptors. Fusogenic changes involve assembly of two heptad repeats in the ectodomain of the gp41 transmembrane subunit to form a six-helix bundle (6HB), consisting of a trimeric N heptad repeat (N-HR) coiled-coil core with three antiparallel C heptad repeats (C-HRs) that pack in the coiled-coil grooves. Peptides corresponding to the N-and C-HRs (N and C peptides, respectively) interfere with formation of the 6HB in a dominant-negative manner and are emerging as a new class of antiretroviral therapeutics for treating HIV infection. We generated an escape mutant virus with resistance to an N peptide and show that early resistance involved two mutations, one each in the N- and C-HRs. The mutations conferred resistance not only to the selecting N peptide but also to C peptides, as well as other types of N-peptide inhibitors. Moreover, the N-HR mutation altered sensitivity to soluble CD4. Biophysical studies suggest that the 6HB with the resistance mutations is more stable than the wild-type 6HB and the 6HB formed by inhibitor binding to either wild-type or mutant C-HR. These findings provide new insights into potential mechanisms of resistance to HIV peptide fusion inhibitors and dominant-negative inhibitors in general. The results are discussed in the context of current models of Env-mediated membrane fusion.

1998 ◽  
Vol 72 (12) ◽  
pp. 9676-9682 ◽  
Author(s):  
Yongkai Weng ◽  
Carol D. Weiss

ABSTRACT The envelope glycoprotein (Env) of human immunodeficiency virus mediates virus entry into cells by undergoing conformational changes that lead to fusion between viral and cellular membranes. A six-helix bundle in gp41, consisting of an interior trimeric coiled-coil core with three exterior helices packed in the grooves (core structure), has been proposed to be part of a fusion-active structure of Env (D. C. Chan, D. Fass, J. M. Berger, and P. S. Kim, Cell 89:263–273, 1997; W. Weissenhorn, A. Dessen, S. C. Harrison, J. J. Skehel, and D. C. Wiley, Nature 387:426–430, 1997; and K. Tan, J. Liu, J. Wang, S. Shen, and M. Lu, Proc. Natl. Acad. Sci. USA 94:12303, 1997). We analyzed the effects of amino acid substitutions of arginine or glutamic acid in residues in the coiled-coil (heptad repeat) domain that line the interface between the helices in the gp41 core structure. We found that mutations of leucine to arginine or glutamic acid in position 556 and of alanine to arginine in position 558 resulted in undetectable levels of Env expression. Seven other mutations in six positions completely abolished fusion activity despite incorporation of the mutant Env into virions and normal gp160 processing. Single-residue substitutions of glutamic acid at position 570 or 577 resulted in the only viable mutants among the 16 mutants studied, although both viable mutants exhibited impaired fusion activity compared to that of the wild type. The glutamic acid 577 mutant was more sensitive than the wild type to inhibition by a gp41 coiled-coil peptide (DP-107) but not to that by another peptide corresponding to the C helix in the gp41 core structure (DP-178). These results provide insight into the gp41 fusion mechanism and suggest that the DP-107 peptide may inhibit fusion by binding to the homologous region in gp41, probably by forming a peptide-gp41 coiled-coil structure.


2007 ◽  
Vol 51 (7) ◽  
pp. 2388-2395 ◽  
Author(s):  
Lifeng Cai ◽  
Miriam Gochin

ABSTRACT A metallopeptide-based fluorescence assay has been designed for the detection of small-molecule inhibitors of human immunodeficiency virus type 1 gp41, the viral protein involved in membrane fusion. The assay involves two peptides representing the inner N-terminal-heptad-repeat (HR1) coiled coil and the outer C-terminal-heptad-repeat (HR2) helical domains of the gp41 six-helix bundle which forms prior to fusion. The two peptides span a hydrophobic pocket previously defined in the literature. The HR1 peptide is modified with a metal-ligated dye complex, which maintains structural integrity and permits association with a fluorophore-labeled HR2 peptide to be followed by fluorescence quenching. Compounds able to disrupt six-helix bundle formation can act as fusion inhibitors, and we show that they can be detected in the assay from an increase in the fluorescence that is correlated with the potency of the compound. Assay optimization and validation have resulted in a simple quantitative competitive inhibition assay for fusion inhibitors that bind in the hydrophobic pocket. The assay has an assay quality factor (Z′) of 0.88 and can rank order inhibitors at 10 μM concentration with Ki s in the range of 0.2 μM to 30 μM, an ideal range for drug discovery. Screening of a small peptidomimetic library has yielded three new low-molecular-weight gp41 inhibitors. In vitro syncytium inhibition assays confirmed that the compounds inhibited cell-cell fusion in the low micromolar range. These lead compounds provide a new molecular scaffold for the development of fusion inhibitors.


2010 ◽  
Vol 84 (10) ◽  
pp. 5201-5211 ◽  
Author(s):  
Robert C. Walker ◽  
Mohammad A. Khan ◽  
Sandra Kao ◽  
Ritu Goila-Gaur ◽  
Eri Miyagi ◽  
...  

ABSTRACT APOBEC3G (A3G) is a host cytidine deaminase that serves as a potent intrinsic inhibitor of retroviral replication. A3G is packaged into human immunodeficiency virus type 1 virions and deaminates deoxycytidine to deoxyuridine on nascent minus-strand retroviral cDNA, leading to hyper-deoxyguanine-to-deoxyadenine mutations on positive-strand cDNA and inhibition of viral replication. The antiviral activity of A3G is suppressed by Vif, a lentiviral accessory protein that prevents encapsidation of A3G. In this study, we identified dominant negative mutants of Vif that interfered with the ability of wild-type Vif to inhibit the encapsidation and antiviral activity of A3G. These mutants were nonfunctional due to mutations in the highly conserved HCCH and/or SOCS box motifs, which are required for assembly of a functional Cul5-E3 ubiquitin ligase complex. Similarly, mutation or deletion of a PPLP motif, which was previously reported to be important for Vif dimerization, induced a dominant negative phenotype. Expression of dominant negative Vif counteracted the Vif-induced reduction of intracellular A3G levels, presumably by preventing Vif-induced A3G degradation. Consequently, dominant negative Vif interfered with wild-type Vif's ability to exclude A3G from viral particles and reduced viral infectivity despite the presence of wild-type Vif. The identification of dominant negative mutants of Vif presents exciting possibilities for the design of novel antiviral strategies.


1999 ◽  
Vol 80 (8) ◽  
pp. 1965-1974 ◽  
Author(s):  
Anne Marie Szilvay ◽  
Stig-Ove Bøe ◽  
Karl-Henning Kalland

Trans-dominant negative mutants of the human immunodeficiency virus type 1 (HIV-1) regulatory protein Rev inhibit the function of wild-type Rev in a dose-dependent manner. This was previously shown to be caused by nuclear retention of the wild-type protein. In the present work, further analysis of the trans-dominant negative effect was performed using cotransfection experiments with different constructs encoding HIV-1 Rev and viral structural proteins together with a plasmid encoding a trans-dominant negative Rev mutant. Thus, one species of pre-mRNA was transcribed from the reporter plasmids. This pre-mRNA was then either spliced or exported by Rev as unspliced RNA for translation of the HIV structural proteins. An immunofluorescence assay and Western blot analysis were used for analysis of protein expression. In situ hybridization was applied for labelling of unspliced mRNA in transfected cells, and RNase protection analysis was used to determine the relative amount of unspliced versus spliced mRNAs. The experiments confirmed that the trans-dominant negative mutant inhibited nuclear export of unspliced mRNA. It was, in addition, demonstrated for the first time that the trans-dominant negative mutant also affected a Rev-dependent regulatory step connected with viral pre-mRNA splicing. As a consequence, proteins expressed from unspliced and singly spliced HIV mRNAs decreased while there was an increase in protein products encoded by spliced and alternatively spliced mRNAs.


2002 ◽  
Vol 46 (12) ◽  
pp. 3954-3962 ◽  
Author(s):  
Valery Fikkert ◽  
Peter Cherepanov ◽  
Kristel Van Laethem ◽  
Anke Hantson ◽  
Barbara Van Remoortel ◽  
...  

ABSTRACT We describe the development of chimeric virus technology (CVT) for human immunodeficiency virus (HIV) type 1 (HIV-1) env genes gp120, gp41, and gp160 for evaluation of the susceptibilities of HIV to entry inhibitors. This env CVT allows the recombination of env sequences derived from different strains into a proviral wild-type HIV-1 clone (clone NL4.3) from which the corresponding env gene has been deleted. An HIV-1 strain (strain NL4.3) resistant to the fusion inhibitor T20 (strain NL4.3/T20) was selected in vitro in the presence of T20. AMD3100-resistant strain NL3.4 (strain NL4.3/AMD3100) was previously selected by De Vreese et al. (K. De Vreese et al., J. Virol. 70:689-696, 1996). NL4.3/AMD3100 contains several mutations in its gp120 gene (De Vreese et al., J. Virol. 70:689-696, 1996), whereas NL4.3/T20 has mutations in both gp120 and gp41. Phenotypic analysis revealed that NL4.3/AMD3100 lost its susceptibility to dextran sulfate, AMD3100, AMD2763, T134, and T140 but not its susceptibility to T20, whereas NL4.3/T20 lost its susceptibility only to the inhibitory effect of T20. The recombination of gp120 of NL4.3/AMD3100 and gp41 of NL4.3/T20 or recombination of the gp160 genes of both strains into a wild-type background reproduced the phenotypic (cross-)resistance profiles of the corresponding strains selected in vitro. These data imply that mutations in gp120 alone are sufficient to reproduce the resistance profile of NL4.3/AMD3100. The same can be said for gp41 in relation to NL4.3/T20. In conclusion, we demonstrate the use of env CVT as a research tool in the delineation of the region important for the phenotypic (cross-)resistance of HIV strains to entry inhibitors. In addition, we obtained a proof of principle that env CVT can become a helpful diagnostic tool in assessments of the phenotypic resistance of clinical HIV isolates to HIV entry inhibitors.


2008 ◽  
Vol 82 (9) ◽  
pp. 4384-4399 ◽  
Author(s):  
Shigeo Kawada ◽  
Toshiyuki Goto ◽  
Hiyori Haraguchi ◽  
Akira Ono ◽  
Yuko Morikawa

ABSTRACT Myristoylation of human immunodeficiency virus (HIV) Gag protein is essential for membrane targeting of Gag and production of viral particles. We show here that coexpression of wild-type and nonmyristoylated forms of HIV Gag resulted in severe inhibition of viral particle production, indicating that the nonmyristoylated counterpart had a dominant negative effect on particle release. When coexpressed, the nonmyristoylated Gag partially incorporated into membrane and lipid raft fractions, likely through coassembly with the wild-type Gag. The membrane and raft associations of the wild-type Gag appeared unaffected, and yet particle production was severely impaired. When viral particles produced from the coexpressing cells were analyzed, the wild-type Gag was more abundant than the nonmyristoylated Gag. Confocal microscopy showed that both forms of Gag were diffusely distributed in the cytoplasm of coexpressing cells but that a portion of the wild-type Gag population was accumulated in EEA1- and CD63-positive endosomes. The intracellular accumulation of Gag was more frequently observed at late time points. The Gag accumulation was also observed on the cell surface protrusion. Electron microscopy of the coexpressing cells revealed budding arrest phenotypes, including the occurrence of interconnected virions on the plasma membrane, and intracellular budding. We also show that the inhibition of particle production and the Gag accumulation to endosomes were suppressed when the nucleocapsid (NC) domain was deleted from the nonmyristoylated Gag, although the NC-deleted Gag was still capable of coassembly. Overall, our data indicate that coassembly with the nonmyristoylated Gag impairs HIV particle release, a phenomenon that may involve NC-mediated Gag-Gag interaction.


2018 ◽  
Vol 93 (3) ◽  
Author(s):  
Luis R. Castillo-Menendez ◽  
Hanh T. Nguyen ◽  
Joseph Sodroski

ABSTRACTBinding to the receptor CD4 triggers entry-related conformational changes in the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, (gp120/gp41)3. Soluble versions of HIV-1 Env trimers (sgp140 SOSIP.664) stabilized by a gp120-gp41 disulfide bond and a change (I559P) in gp41 have been structurally characterized. Here, we use cross-linking/mass spectrometry to evaluate the conformations of functional membrane Env and sgp140 SOSIP.664. Differences were detected in the gp120 trimer association domain and C terminus and in the gp41 heptad repeat 1 (HR1) region. Whereas the membrane Env trimer exposes the gp41 HR1 coiled coil only after CD4 binding, the sgp140 SOSIP.664 HR1 coiled coil was accessible to the gp41 HR2 peptide even in the absence of CD4. Our results delineate differences in both gp120 and gp41 subunits between functional membrane Env and the sgp140 SOSIP.664 trimer and provide distance constraints that can assist validation of candidate structural models of the native HIV-1 Env trimer.IMPORTANCEHIV-1 envelope glycoprotein spikes mediate the entry of the virus into host cells and are a major target for vaccine-induced antibodies. Soluble forms of the envelope glycoproteins that are stable and easily produced have been characterized extensively and are being considered as vaccines. Here, we present evidence that these stabilized soluble envelope glycoproteins differ in multiple respects from the natural HIV-1 envelope glycoproteins. By pinpointing these differences, our results can guide the improvement of envelope glycoprotein preparations to achieve greater similarity to the viral envelope glycoprotein spike, potentially increasing their effectiveness as a vaccine.


2000 ◽  
Vol 74 (13) ◽  
pp. 6186-6192 ◽  
Author(s):  
Miroslaw K. Gorny ◽  
Susan Zolla-Pazner

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) entry into target cells appears to be triggered when two heptad repeat regions in the ectodomain of gp41 associate, converting the prefusogenic form of gp41 to a fusogenic form. Peptides from these two heptad repeat regions, designated N51 and C43, form a coiled coil consisting of an α-helical trimer of heterodimers which approximates the core of the fusogenic form of gp41. To understand the antigenic structures of gp41 in these two configurations, and to examine the specificity of anti-gp41 antibodies produced by HIV-1-infected individuals, human anti-gp41 monoclonal antibodies (MAbs) were tested for their reactivity against N51, C43, and the complex formed by these peptides. Of 11 MAbs, 7 reacted with the complex but with neither of the parent peptides. These MAbs reacted optimally with the N51-C43 complex prepared at a 1:1 ratio and appeared to recognize the fusogenic form of gp41 in which the two heptad repeat regions are associated to form the coiled coil. The existence of antibodies from HIV-infected humans that exclusively recognize the N51-C43 complex constitutes the first proof that the coiled-coil conformation of gp41 exists in vivo and is immunogenic. Two of the 11 MAbs were specific for the hydrophilic loop region of gp41 and failed to react with either peptide alone or with the peptide complex, while the remaining 2 MAbs reacted with peptide C43. One of these two latter MAbs, 98-6, also reacted well with the equimolar N51-C43 complex, while reactivity with C43 by the other MAb, 2F5, was inhibited by even small amounts of N51, suggesting that the interaction of these peptides occludes or disrupts the epitope recognized by MAb 2F5. MAbs 98-6 and 2F5 are also unusual among the MAbs tested in their ability to neutralize multiple primary HIV isolates, although 2F5 displays more broad and potent activity. The data suggest that anti-gp41 neutralizing activity is associated with specificity for a region in C43 which participates in complex formation with N51.


Sign in / Sign up

Export Citation Format

Share Document