scholarly journals Regions of the Varicella-Zoster Virus Open Reading Frame 63 Latency-Associated Protein Important for Replication In Vitro Are Also Critical for Efficient Establishment of Latency

2005 ◽  
Vol 79 (8) ◽  
pp. 5069-5077 ◽  
Author(s):  
Jeffrey I. Cohen ◽  
Tammy Krogmann ◽  
Sebastien Bontems ◽  
Catherine Sadzot-Delvaux ◽  
Lesley Pesnicak

ABSTRACT Varicella-zoster virus (VZV) open reading frame 63 (ORF63) is one of the most abundant transcripts expressed during VZV latency in humans, and ORF63 protein has been detected in human ganglia by several laboratories. Deletion of over 90% of the ORF63 gene showed that the protein is required for efficient establishment of latency in rodents. We have constructed viruses with a series of mutations in ORF63. While prior experiments showed that transfection of cells with a plasmid expressing ORF63 but lacking the putative nuclear localization signal of the protein resulted in increased expression of the protein in the cytoplasm, we found that ORF63 protein remained in the nucleus in cells infected with a VZV ORF63 nuclear localization signal deletion mutant. This mutant was not impaired for growth in cell culture or for latency in rodents. Replacement of five serine or threonine phosphorylation sites in ORF63 with alanines resulted in a virus that was impaired for replication in vitro and for latency. A series of ORF63 carboxy-terminal mutants showed that the last 70 amino acids do not affect replication in vitro or latency in rodents; however, the last 108 amino acids are important for replication and latency. Thus, regions of ORF63 that are important for replication in vitro are also required for efficient establishment of latency.

2000 ◽  
Vol 81 (9) ◽  
pp. 2231-2244 ◽  
Author(s):  
Kyra Giesen ◽  
Klaus Radsak ◽  
Elke Bogner

Human cytomegalovirus (HCMV) DNA-binding protein pUL56 is thought to be involved in the cleavage/packaging process of viral DNA and therefore needs to be transported into the nucleus. By using indirect immunofluorescence analysis, HCMV pUL56 (p130) was found to be localized predominantly in the nucleus of infected cells. Solitary expression of wild-type as well as epitope-tagged pUL56 also resulted in nuclear distribution after transfection, suggesting the presence of an endogenous nuclear localization signal (NLS). Deletion of a carboxy-terminal stretch of basic amino acids (aa 816–827) prevented nuclear translocation, indicating that the sequence RRVRATRKRPRR of HCMV pUL56 mediates nuclear targetting. The signal character of the NLS sequence was demonstrated by successful transfer of the NLS to a reporter protein chimera. Furthermore, sequential substitutions of pairs of amino acids by alanine in the context of the reporter protein as well as substitutions within the full-length pUL56 sequence indicated that residues at positions 7 and 8 of the NLS (R and K at positions 822 and 823 of pUL56) were essential for nuclear translocation. In order to identify the transport machinery involved, the potential of pUL56 to bind importin α (hSRP1α) was examined. Clear evidence of a direct interaction of a carboxy-terminal portion as well as the NLS of pUL56 with hSRP1α was provided by in vitro binding assays. In view of these findings, it is suggested that nuclear translocation of HCMV pUL56 is mediated by the importin-dependent pathway.


2005 ◽  
Vol 79 (20) ◽  
pp. 13070-13081 ◽  
Author(s):  
Christina L. Stallings ◽  
Saul Silverstein

ABSTRACT Open reading frame 29 (ORF29) of varicella-zoster virus (VZV) encodes a 120-kDa single-stranded DNA binding protein (ORF29p) that is not packaged in the virion and is expressed during latency. During lytic infection, ORF29p is localized primarily to infected cell nuclei. In contrast, ORF29p is found exclusively in the cytoplasm in neurons of the dorsal root ganglia obtained at autopsy from seropositive latently infected patients. ORF29p accumulates in the nuclei of neurons in dorsal root ganglia obtained at autopsy from patients with active zoster. The localization of this protein is, therefore, tightly correlated with the proposed VZV lytic/latent switch. In this report, we have investigated the nuclear import mechanism of ORF29p. We identified a novel nuclear targeting domain bounded by amino acids 9 to 154 of ORF29p that functions independent of other VZV-encoded factors. In vitro import assays in digitonin-permeabilized HeLa cells reveal that ORF29p is transported into the nucleus by a Ran-, karyopherin α- and β-dependent mechanism. These data are further supported by the demonstration that a glutathione S-transferase-karyopherin α fusion interacts with ORF29p, but not with a protein containing a point mutation in its nuclear localization signal (NLS). Therefore, the region of ORF29p responsible for its nuclear targeting is also involved in the association with karyopherin α. As a result of this interaction, this noncanonical NLS appears to hijack the classical cellular nuclear import machinery. Elucidation of the mechanisms governing ORF29p nuclear targeting could shed light on the VZV reactivation process.


2000 ◽  
Vol 74 (5) ◽  
pp. 2265-2277 ◽  
Author(s):  
Paul R. Kinchington ◽  
Karen Fite ◽  
Stephanie E. Turse

ABSTRACT IE62, the major transcriptional activator protein encoded by varicella-zoster virus (VZV), locates to the nucleus when expressed in transfected cells. We show here that cytoplasmic forms of IE62 accumulate in transfected and VZV-infected cells as the result of the protein kinase activity associated with VZV open reading frame 66 (ORF66). Expression of the ORF66 protein kinase but not the VZV ORF47 protein kinase impaired the ability of coexpressed IE62 to transactivate promoter-reporter constructs. IE62 that was coexpressed with the ORF66 protein accumulated predominantly in the cytoplasm, whereas the normal nuclear localization of other proteins was not affected by the ORF66 protein. In cells infected with VZV, IE62 accumulated in the cytoplasm at late times of infection, whereas in cells infected with a VZV recombinant unable to express ORF66 protein (ROka66S), IE62 was completely nuclear. Point mutations introduced into the predicted serine/threonine catalytic domain and ATP binding domain of ORF66 abrogated its ability to influence IE62 nuclear localization, indicating that the protein kinase activity was required. The region of IE62 that was targeted by ORF66 was mapped to amino acids 602 to 733. IE62 peptides containing this region were specifically phosphorylated in cells coexpressing the ORF66 protein kinase and in cells infected with wild-type VZV but were not phosphorylated in cells infected with ROka66S. We conclude that the ORF66 protein kinase phosphorylates IE62 to induce its cytoplasmic accumulation, most likely by inhibiting IE62 nuclear import.


2004 ◽  
Vol 78 (3) ◽  
pp. 1181-1194 ◽  
Author(s):  
Armin Baiker ◽  
Christoph Bagowski ◽  
Hideki Ito ◽  
Marvin Sommer ◽  
Leigh Zerboni ◽  
...  

ABSTRACT The immediate-early 63-kDa (IE63) protein of varicella-zoster virus (VZV) is a phosphoprotein encoded by open reading frame (ORF) ORF63/ORF70. To identify functional domains, 22 ORF63 mutations were evaluated for effects on IE63 binding to the major VZV transactivator, IE62, and on IE63 phosphorylation and nuclear localization in transient transfections, and after insertion into the viral genome with VZV cosmids. The IE62 binding site was mapped to IE63 amino acids 55 to 67, with R59/L60 being critical residues. Alanine substitutions within the IE63 center region showed that S165, S173, and S185 were phosphorylated by cellular kinases. Four mutations that changed two putative nuclear localization signal (NLS) sequences altered IE63 distribution to a cytoplasmic/nuclear pattern. Only three of 22 mutations in ORF63 were compatible with recovery of infectious VZV from our cosmids, but infectivity was restored by inserting intact ORF63 into each mutated cosmid. The viable IE63 mutants had a single alanine substitution, altering T171, S181, or S185. These mutants, rOKA/ORF63rev[T171], rOKA/ORF63rev[S181], and rOKA/ORF63rev[S185], produced less infectious virus and had a decreased plaque phenotype in vitro. ORF47 kinase protein and glycoprotein E (gE) synthesis was reduced, indicating that IE63 contributed to optimal expression of early and late gene products. The three IE63 mutants replicated in skin xenografts in the SCIDhu mouse model, but virulence was markedly attenuated. In contrast, infectivity in T-cell xenografts was not altered. Comparative analysis suggested that IE63 resembled the herpes simplex virus type 1 US1.5 protein, which is expressed colinearly with ICP22 (US1). In summary, most mutations of ORF63 made with our VZV cosmid system were lethal for infectivity. The few IE63 changes that were tolerated resulted in VZV mutants with an impaired capacity to replicate in vitro. However, the IE63 mutants were attenuated in skin but not T cells in vivo, indicating that the contribution of the IE63 tegument/regulatory protein to VZV pathogenesis depends upon the differentiated human cell type which is targeted for infection within the intact tissue microenvironment.


2004 ◽  
Vol 78 (21) ◽  
pp. 11833-11840 ◽  
Author(s):  
Jeffrey I. Cohen ◽  
Edward Cox ◽  
Lesley Pesnicak ◽  
Shamala Srinivas ◽  
Tammy Krogmann

ABSTRACT Varicella-zoster virus (VZV) expresses at least six viral transcripts during latency. One of these transcripts, derived from open reading frame 63 (ORF63), is one of the most abundant viral RNAs expressed during latency. The VZV ORF63 protein has been detected in human and experimentally infected rodent ganglia by several laboratories. We have deleted >90% of both copies of the ORF63 gene from the VZV genome. Animals inoculated with the ORF63 mutant virus had lower mean copy numbers of latent VZV genomes in the dorsal root ganglia 5 to 6 weeks after infection than animals inoculated with parental or rescued virus, and the frequency of latently infected animals was significantly lower in animals infected with the ORF63 mutant virus than in animals inoculated with parental or rescued virus. In contrast, the frequency of animals latently infected with viral mutants in other genes that are equally or more impaired for replication in vitro, compared with the ORF63 mutant, is similar to that of animals latently infected with parental VZV. Examination of dorsal root ganglia 3 days after infection showed high levels of VZV DNA in animals infected with either ORF63 mutant or parental virus; however, by days 6 and 10 after infection, the level of viral DNA in animals infected with the ORF63 mutant was significantly lower than that in animals infected with parental virus. Thus, ORF63 is not required for VZV to enter ganglia but is the first VZV gene shown to be critical for establishment of latency. Since the present vaccine can reactivate and cause shingles, a VZV vaccine based on the ORF63 mutant virus might be safer.


2006 ◽  
Vol 80 (4) ◽  
pp. 1710-1723 ◽  
Author(s):  
Amie J. Eisfeld ◽  
Stephanie E. Turse ◽  
Sara A. Jackson ◽  
Edwina C. Lerner ◽  
Paul R. Kinchington

ABSTRACT IE62, the major transcriptional regulatory protein encoded by varicella-zoster virus (VZV), is nuclear at early times of VZV infection but then becomes predominantly cytoplasmic as a result of expression of the protein kinase encoded by open reading frame 66 (ORF66). Cytoplasmic forms of IE62 are required for its inclusion as an abundant VZV virion tegument protein. Here we show that ORF66 directly phosphorylates IE62 at two residues, with phosphorylation at S686 being sufficient to regulate IE62 nuclear import. Phosphotryptic peptide analyses established an ORF66 kinase-mediated phosphorylation of the complete IE62 protein in transfected and VZV-infected cells. Using truncated and point-mutated IE62 peptides, ORF66-directed phosphorylation was mapped to residues S686 and S722, immediately downstream of the IE62 nuclear localization signal. An IE62 protein with an S686A mutation retained efficient nuclear import activity, even in the presence of functional ORF66 protein kinase, but an IE62 protein containing an S686D alteration was imported into the nucleus inefficiently. In contrast, the nuclear import of IE62 carrying an S722A mutation was still modulated by ORF66 expression, and IE62 with an S722D mutation was imported efficiently into the nucleus. An in vitro phosphorylation assay was developed using bacterially expressed IE62-maltose binding protein fusions as substrates for immunopurified ORF66 protein kinase from recombinant baculovirus-infected insect cells. ORF66 kinase phosphorylated the IE62 peptides, with similar specificities for residues S686 and S722. These results indicate that IE62 nuclear import is modulated as a result of direct phosphorylation of IE62 by ORF66 kinase. This represents an interaction that is, so far, unique among the alphaherpesviruses.


2002 ◽  
Vol 76 (17) ◽  
pp. 8931-8938 ◽  
Author(s):  
Yiyang Xu ◽  
Kelly S. Colletti ◽  
Gregory S. Pari

ABSTRACT The UL84 open reading frame encodes a protein that is required for origin-dependent DNA replication and interacts with the immediate-early protein IE2 in lytically infected cells. Transfection of UL84 expression constructs showed that UL84 localized to the nucleus of transfected cells in the absence of any other viral proteins and displayed a punctate speckled fluorescent staining pattern. Cotransfection of all the human cytomegalovirus replication proteins and oriLyt, along with pUL84-EGFP, showed that UL84 colocalized with UL44 (polymerase accessory protein) in replication compartments. Experiments using infected human fibroblasts demonstrated that UL84 also colocalized with UL44 and IE2 in viral replication compartments in infected cells. A nuclear localization signal was identified using plasmid constructs expressing truncation mutants of the UL84 protein in transient transfection assays. Transfection assays showed that UL84 failed to localize to the nucleus when 200 amino acids of the N terminus were deleted. Inspection of the UL84 amino acid sequence revealed a consensus putative nuclear localization signal between amino acids 160 and 171 (PEKKKEKQEKK) of the UL84 protein.


2003 ◽  
Vol 77 (6) ◽  
pp. 3734-3748 ◽  
Author(s):  
Peter Lischka ◽  
Gabriele Sorg ◽  
Michael Kann ◽  
Michael Winkler ◽  
Thomas Stamminger

ABSTRACT The open reading frame UL84 of human cytomegalovirus encodes a multifunctional regulatory protein which is required for viral DNA replication and binds with high affinity to the immediate-early transactivator IE2-p86. Although the exact role of pUL84 in DNA replication is unknown, the nuclear localization of this protein is a prerequisite for this function. To investigate whether the activities of pUL84 are modulated by cellular proteins we used the Saccharomyces cerevisiae two-hybrid system to screen a cDNA-library for interacting proteins. Strong interactions were found between pUL84 and four members of the importin α protein family. These interactions could be confirmed in vitro by pull down experiments and in vivo by coimmunoprecipitation analysis from transfected cells. Using in vitro transport assays we showed that the pUL84 nuclear import required importin α, importin β, and Ran, thus following the classical importin-mediated import pathway. Deletion mutagenesis of pUL84 revealed a domain of 282 amino acids which is required for binding to the importin α proteins. Its function as a nuclear localization signal (NLS) was confirmed by fusion to heterologous proteins. Although containing a cluster of basic amino acids similar to classical NLSs, this cluster did not contain the NLS activity. Thus, a complex structure appears to be essential for importin α binding and import activity.


2006 ◽  
Vol 80 (7) ◽  
pp. 3238-3248 ◽  
Author(s):  
Xibing Che ◽  
Leigh Zerboni ◽  
Marvin H. Sommer ◽  
Ann M. Arvin

ABSTRACT The open reading frame 10 (ORF10) of varicella-zoster virus (VZV) encodes a tegument protein that enhances transactivation of VZV genes and has homology to herpes simplex virus type 1 (HSV-1) VP16. While VP16 is essential for HSV replication, ORF10 is dispensable for vaccine OKA (VOKA) growth in vitro. We used parent OKA (POKA) cosmids to delete ORF10, producing POKAΔ10; point mutations that disrupted the acidic activation domain and the putative motif for binding human cellular factor 1 (HCF-1) in ORF10 protein yielded POKA10-Phe28Ala, POKA10-Phe28Ser, and POKA10-mHCF viruses. Deleting ORF10 or mutating these two functional domains had no effect on VZV replication, immediate-early gene transcription, or virion assembly in vitro. However, deleting ORF10 reduced viral titers and the extent of cutaneous lesions significantly in SCIDhu skin xenografts in vivo compared to POKA. Epidermal cells infected with POKAΔ10 had significantly fewer DNA-containing nucleocapsids and complete virions compared to POKA; extensive aggregates of intracytoplasmic viral particles were also observed. Altering the activation or the putative HCF-1 domains of ORF10 protein had no consequences for VZV replication in vivo. Thus, the decreased pathogenic potential of POKAΔ10 in skin could not be attributed to absence of these ORF10 protein functions. In contrast to skin cells, deleting ORF10 did not impair VZV T-cell tropism in vivo, as assessed by infectious virus yields. We conclude that ORF10 protein is required for efficient VZV virion assembly and is a specific determinant of VZV virulence in epidermal and dermal cells in vivo.


Sign in / Sign up

Export Citation Format

Share Document