scholarly journals Antibody Landscape Analysis following Influenza Vaccination and Natural Infection in Humans with a High-Throughput Multiplex Influenza Antibody Detection Assay

mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhu-Nan Li ◽  
Feng Liu ◽  
F. Liaini Gross ◽  
Lindsay Kim ◽  
Jill Ferdinands ◽  
...  

ABSTRACT To better understand the antibody landscape changes following influenza virus natural infection and vaccination, we developed a high-throughput multiplex influenza antibody detection assay (MIADA) containing 42 recombinant hemagglutinins (rHAs) (ectodomain and/or globular head domain) from pre-2009 A(H1N1), A(H1N1)pdm09, A(H2N2), A(H3N2), A(H5N1), A(H7N7), A(H7N9), A(H7N2), A(H9N2), A(H13N9), and influenza B viruses. Panels of ferret antisera, 227 paired human sera from vaccinees (children and adults) in 5 influenza seasons (2010 to 2018), and 17 paired human sera collected from real-time reverse transcription-PCR (rRT-PCR)-confirmed influenza A(H1N1)pdm09, influenza A(H3N2), or influenza B virus-infected adults were analyzed by the MIADA. Ferret antisera demonstrated clear strain-specific antibody responses to exposed subtype HA. Adults (19 to 49 years old) had broader antibody landscapes than young children (<3 years old) and older children (9 to 17 years old) both at baseline and post-vaccination. Influenza vaccination and infection induced the strongest antibody responses specific to HA(s) of exposed strain/subtype viruses and closely related strains; they also induced cross-reactive antibodies to an unexposed influenza virus subtype(s), including novel viruses. Subsequent serum adsorption confirmed that the cross-reactive antibodies against novel subtype HAs were mainly induced by exposures to A(H1N1)/A(H3N2) influenza A viruses. In contrast, adults infected by influenza B viruses mounted antibody responses mostly specific to two influenza B virus lineage HAs. Median fluorescence intensities (MFIs) and seroconversion in MIADA had good correlations with the titers and seroconversion measured by hemagglutination inhibition and microneutralization assays. Our study demonstrated that antibody landscape analysis by the MIADA can be used for influenza vaccine evaluations and characterization of influenza virus infections. IMPORTANCE Repeated influenza vaccination and natural infections generate complex immune profiles in humans that require antibody landscape analysis to assess immunity and evaluate vaccines. However, antibody landscape analyses are difficult to perform using traditional assays. Here, we developed a high-throughput, serum-sparing, multiplex influenza antibody detection assay (MIADA) and analyzed the antibody landscapes following influenza vaccination and infection. We showed that adults had broader antibody landscapes than children. Influenza vaccination and infection not only induced the strongest antibody responses to the hemagglutinins of the viruses of exposure, but also induced cross-reactive antibodies to novel influenza viruses that can be removed by serum adsorption. There is a good correlation between the median fluorescence intensity (MFI) measured by MIADA and hemagglutination inhibition/microneutralization titers. Antibody landscape analysis by the MIADA can be used in influenza vaccine evaluations, including the development of universal influenza vaccines and the characterization of influenza virus infections.

Author(s):  
Pınar YAZICI ÖZKAYA ◽  
Eşe Eda TURANLI ◽  
Hamdi METİN ◽  
Ayça Aydın UYSAL ◽  
Candan ÇİÇEK ◽  
...  

1978 ◽  
Vol 80 (1) ◽  
pp. 13-19 ◽  
Author(s):  
N. Masurel ◽  
J. I. de Bruijne ◽  
H. A. Beuningh ◽  
H. J. A. Schouten

SUMMARYHaemagglutination inhibition (HI) antibodies against the influenza viruses A/Hong Kong/8/68 (H3N2) and B/Nederland/77/66 were determined in 420 paired sera from mothers and newborns (umbilical cord sera), sampled in 1970–1.A higher concentration of antibodies against influenza A virus was found more frequently in neonatal than in maternal sera. By contrast, low titres against influenza B virus were more frequently observed in neonatal than in maternal sera. Maternal age, duration of pregnancy, and birth-weight did not affect the results of the tests.It is suggested that the titre of the newborn against an epidemic influenza virus can be predicted from that of the mother. Furthermore, the maternal titre may be an indication of the susceptibility of the newborn infant to influenza infections.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Mira C. Patel ◽  
Kari Ann Shirey ◽  
Marina S. Boukhvalova ◽  
Stefanie N. Vogel ◽  
Jorge C. G. Blanco

ABSTRACT Host-derived “danger-associated molecular patterns” (DAMPs) contribute to innate immune responses and serve as markers of disease progression and severity for inflammatory and infectious diseases. There is accumulating evidence that generation of DAMPs such as oxidized phospholipids and high-mobility-group box 1 (HMGB1) during influenza virus infection leads to acute lung injury (ALI). Treatment of influenza virus-infected mice and cotton rats with the Toll-like receptor 4 (TLR4) antagonist Eritoran blocked DAMP accumulation and ameliorated influenza virus-induced ALI. However, changes in systemic HMGB1 kinetics during the course of influenza virus infection in animal models and humans have yet to establish an association of HMGB1 release with influenza virus infection. To this end, we used the cotton rat model that is permissive to nonadapted strains of influenza A and B viruses, respiratory syncytial virus (RSV), and human rhinoviruses (HRVs). Serum HMGB1 levels were measured by an enzyme-linked immunosorbent assay (ELISA) prior to infection until day 14 or 18 post-infection. Infection with either influenza A or B virus resulted in a robust increase in serum HMGB1 levels that decreased by days 14 to 18. Inoculation with the live attenuated vaccine FluMist resulted in HMGB1 levels that were significantly lower than those with infection with live influenza viruses. RSV and HRVs showed profiles of serum HMGB1 induction that were consistent with their replication and degree of lung pathology in cotton rats. We further showed that therapeutic treatment with Eritoran of cotton rats infected with influenza B virus significantly blunted serum HMGB1 levels and improved lung pathology, without inhibiting virus replication. These findings support the use of drugs that block HMGB1 to combat influenza virus-induced ALI. IMPORTANCE Influenza virus is a common infectious agent causing serious seasonal epidemics, and there is urgent need to develop an alternative treatment modality for influenza virus infection. Recently, host-derived DAMPs, such as oxidized phospholipids and HMGB1, were shown to be generated during influenza virus infection and cause ALI. To establish a clear link between influenza virus infection and HMGB1 as a biomarker, we have systematically analyzed temporal patterns of serum HMGB1 release in cotton rats infected with nonadapted strains of influenza A and B viruses and compared these patterns with a live attenuated influenza vaccine and infection by other respiratory viruses. Towards development of a new therapeutic modality, we show herein that blocking serum HMGB1 levels by Eritoran improves lung pathology in influenza B virus-infected cotton rats. Our study is the first report of systemic HMGB1 as a potential biomarker of severity in respiratory virus infections and confirms that drugs that block virus-induced HMGB1 ameliorate ALI.


2020 ◽  
pp. 153537022096379
Author(s):  
Oraphan Mayuramart ◽  
Pattaraporn Nimsamer ◽  
Somruthai Rattanaburi ◽  
Naphat Chantaravisoot ◽  
Kritsada Khongnomnan ◽  
...  

Due to the common symptoms of COVID-19, patients are similar to influenza-like illness. Therefore, the detection method would be crucial to discriminate between SARS-CoV-2 and influenza virus-infected patients. In this study, CRISPR-Cas12a-based detection was applied for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus, and influenza B virus which would be a practical and attractive application for screening of patients with COVID-19 and influenza in areas with limited resources. The limit of detection for SARS-CoV-2, influenza A, and influenza B detection was 10, 103, and 103 copies/reaction, respectively. Moreover, the assays yielded no cross-reactivity against other respiratory viruses. The results revealed that the detection of influenza virus and SARS-CoV-2 by using RT-RPA and CRISPR-Cas12a technology reaches 96.23% sensitivity and 100% specificity for SARS-CoV-2 detection. The sensitivity for influenza virus A and B detections was 85.07% and 94.87%, respectively. In addition, the specificity for influenza virus A and B detections was approximately 96%. In conclusion, the RT-RPA with CRISPR-Cas12a assay was an effective method for the screening of influenza viruses and SARS-CoV-2 which could be applied to detect other infectious diseases in the future.


2019 ◽  
Vol 220 (6) ◽  
pp. 961-968 ◽  
Author(s):  
Tatiana Schäffer Gregianini ◽  
Ivana R Santos Varella ◽  
Patricia Fisch ◽  
Letícia Garay Martins ◽  
Ana B G Veiga

Abstract Influenza surveillance is important for disease control and should consider possible coinfection with different viruses, which can be associated with disease severity. This study analyzed 34 459 patients with respiratory infection from 2009 to 2018, of whom 8011 were positive for influenza A virus (IAV) or influenza B virus (IBV). We found 18 cases of dual influenza virus infection, including coinfection with 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) and influenza A(H3N2) virus (1 case), A(H1N1)pdm09 and IBV (6 cases), A(H3N2) and IBV (8 cases), and nonsubtyped IAV and IBV (3 cases); and 1 case of triple infection with A(H3N2), A(H1N1)pdm09, and IBV. Compared with 76 monoinfected patients, coinfection was significantly associated with cardiopathy and death. Besides demographic characteristics and clinical symptoms, we assessed vaccination status, antiviral treatment, timeliness of antiviral use, hospitalization, and intensive care unit admission, but no significant differences were found between coinfected and monoinfected cases. Our findings indicate that influenza virus coinfection occurs more often than previously reported and that it can lead to a worse disease outcome.


1976 ◽  
Vol 77 (3) ◽  
pp. 383-392 ◽  
Author(s):  
E. O. Caul ◽  
D. K. Waller ◽  
S. K. R. Clarke ◽  
B. D. Corner

SUMMARYAmong 741 children under 5 years admitted to hospital with respiratory infections during two winters, infection with influenza A virus was diagnosed in 70 (9%), with influenza B virus in 8 (1%), and with respiratory syncytial virus (RSV) in 259 (35 %). Both influenza virus and RSV infections were diagnosed most frequently in children under the age of one year, and diagnosed more frequently in males than females. Influenza illnesses were more severe in boys than girls. Both infections occurred more often, but were not more severe, in children from a conurbation than in those from ‘rural’ areas. Convulsions were the cause of 36% of admissions with influenza A infections, but were rare in RSV infections. Bronchiolitis was the reason for 39% of admissions with RSV infections, but was rare in influenza infections. It is suggested that infants admitted to hospital are a good source of influenza virus strains for monitoring arttigenic variation.


2006 ◽  
Vol 74 (5) ◽  
pp. 2562-2567 ◽  
Author(s):  
Ville T. Peltola ◽  
Kelli L. Boyd ◽  
Julie L. McAuley ◽  
Jerold E. Rehg ◽  
Jonathan A. McCullers

ABSTRACT Streptococcus pneumoniae is the leading cause of otitis media, sinusitis, and pneumonia. Many of these infections result from antecedent influenza virus infections. In this study we sought to determine whether the frequency and character of secondary pneumococcal infections differed depending on the strain of influenza virus that preceded bacterial challenge. In young ferrets infected with influenza virus and then challenged with pneumococcus, influenza viruses of any subtype increased bacterial colonization of the nasopharynx. Nine out of 10 ferrets infected with H3N2 subtype influenza A viruses developed either sinusitis or otitis media, while only 1 out of 11 ferrets infected with either an H1N1 influenza A virus or an influenza B virus did so. These data may partially explain why bacterial complication rates are higher during seasons when H3N2 viruses predominate. This animal model will be useful for further study of the mechanisms that underlie viral-bacterial synergism.


2020 ◽  
Author(s):  
Kyla L. Hooker ◽  
Vitaly V. Ganusov

AbstractInfluenza viruses infect millions of humans every year causing an estimated 400,000 deaths globally. Due to continuous virus evolution current vaccines provide only limited protection against the flu. Several antiviral drugs are available to treat influenza infection, and one of the most most commonly used drugs is oseltamivir (Tamiflu). While the mechanism of action of oseltamivir as a neuraminidase inhibitor is well understood, the impact of oseltamivir on influenza virus dynamics in humans has been controversial. Many clinical trials with oseltamivir have been done by pharmaceutical companies such as Roche but the results of these trials until recently have been reported as summary reports or papers. Typically, such reports included median virus shedding curves for placebo and drug-treated influenza virus infected volunteers often indicating high efficacy of the early treatment. However, median shedding curves may be not accurately representing drug impact in individual volunteers. Importantly, due to public pressure clinical trials data testing oseltamivir efficacy has been recently released in the form of redacted PDF documents. We digitized and re-analyzed experimental data on influenza virus shedding in human volunteers from three previously published trials: on influenza A (1 trial) or B viruses (2 trials). Given that not all volunteers exposed to influenza viruses actually start virus shedding we found that impact of oseltamivir on the virus shedding dynamics was dependent on i) selection of volunteers that were infected with the virus, and ii) the detection limit in the measurement assay; both of these details were not well articulated in the published studies. By assuming that any viral measurement is above the limit of detection we could match previously published data on median influenza A virus (flu A study) shedding but not on influenza B virus shedding (flu B study B) in human volunteers. Additional analyses confirmed that oseltamivir had an impact on the duration of shedding and overall shedding (defined as area under the curve) but this result was varied by the trial. Interestingly, treatment had no impact on the rates at which shedding increased or declined with time in individual volunteers. Additional analyses showed that oseltamivir impacted the kinetics of the start and end of viral shedding and in about 20-40% of volunteers treatment had no impact on viral shedding duration. Our results suggest an unusual impact of oseltamivir on influenza viruses shedding kinetics and caution about the use of published median data or data from a few individuals for inferences. Furthermore, we call for the need to publish raw data from critical clinical trials that can be then independently analyzed.


2018 ◽  
Vol 63 (2) ◽  
pp. 61-68 ◽  
Author(s):  
D. K. Lvov ◽  
E. I. Burtseva ◽  
E. S. Kirillova ◽  
L. V. Kolobukhina ◽  
E. A. Mukasheva ◽  
...  

The article presents the features of the influenza virus circulation for the period from October 2016 to May 2017 in some territories of Russia collaborating with the D.I. Ivanovsky Institute of Virology, Federal State Budgetary Institution “N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology”, Ministry of Health of the Russian Federation. One of the 2016-2017 season’s peculiarities in Russia and countries of the Northern hemisphere was the earlier start of an increase in ARD morbidity with peak indexes reached towards the end of December 2016 - January 2017. First, influenza A(H3N2) virus was predominant; then, it was followed by influenza B virus activity observed until the end of the season. The indexes of morbidity were higher than in the previous season, while the rates of hospitalization and mortality were lower, lethal cases being detected in persons 65 years old and older. Epidemic strains of influenza A(H3N2) virus belonged to 3c.2a genetic group, reference strain A/Hong Hong/4408/2014, and its subgroup 3c.2a1, reference A/Bolzano/7/2016, that are antigenically similar. Strains of influenza B virus were antigenically similar to the B/Brisbane/60/2008 vaccine virus. Strains were sensitive to oseltamivir and zanamivir. The share participation of non-influenza ARI viruses was similar to preliminary epidemic seasons. WHO has issued recommendations for influenza virus vaccines composition for 2017-2018 for the Northern hemisphere.


2000 ◽  
Vol 38 (3) ◽  
pp. 1161-1165 ◽  
Author(s):  
Daniel E. Noyola ◽  
Bruce Clark ◽  
Frederick T. O'Donnell ◽  
Robert L. Atmar ◽  
Jewel Greer ◽  
...  

The performance of a new, rapid, easy-to-perform assay based on neuraminidase enzyme activity for detection of influenza virus types A and B was compared to detection by culture, indirect immunofluorescence, and enzyme immunoassay in 479 nasal wash specimens from children with respiratory infections. Compared to isolation of influenza virus by culture, the neuraminidase assay had a sensitivity of 70.1%, specificity of 92.4%, positive predictive value of 76.3%, and negative predictive value of 89.9%. There was a higher sensitivity for the detection of influenza A virus (76.4%) than for influenza B virus (40.9%). Indirect immunofluorescence showed a sensitivity of 59.8% and specificity of 97% compared to culture isolation for detection of influenza A and B viruses. Enzyme immunoassay showed a sensitivity of 89.7% and specificity of 98.1% for the detection of influenza A alone. The quality of the nasal wash specimen had a significant effect on the detection of influenza virus by all of the assays. A strong response of the neuraminidase assay was more likely to represent a culture-confirmed influenza infection. This new rapid neuraminidase assay was useful for the detection of influenza A and B viruses in nasal wash specimens.


Sign in / Sign up

Export Citation Format

Share Document