scholarly journals The Yeast PH Domain Proteins Slm1 and Slm2 Are Targets of Sphingolipid Signaling during the Response to Heat Stress

2006 ◽  
Vol 27 (2) ◽  
pp. 633-650 ◽  
Author(s):  
Alexes Daquinag ◽  
Maria Fadri ◽  
Sung Yun Jung ◽  
Jun Qin ◽  
Jeannette Kunz

ABSTRACT The PH domain-containing proteins Slm1 and Slm2 were previously identified as effectors of the phosphatidylinositol-4,5-bisphosphate (PI4,5P2) and TORC2 signaling pathways. Here, we demonstrate that Slm1 and Slm2 are also targets of sphingolipid signaling during the heat shock response. We show that upon depletion of cellular sphingolipid levels, Slm1 function becomes essential for survival under heat stress. We further demonstrate that Slm proteins are regulated by a phosphorylation/dephosphorylation cycle involving the sphingolipid-activated protein kinases Pkh1 and Pkh2 and the calcium/calmodulin-dependent protein phosphatase calcineurin. By using a combination of mass spectrometry and mutational analysis, we identified serine residue 659 in Slm1 as a site of phosphorylation. Characterization of Slm1 mutants that mimic dephosphorylated and phosphorylated states demonstrated that phosphorylation at serine 659 is vital for survival under heat stress and promotes the proper polarization of the actin cytoskeleton. Finally, we present evidence that Slm proteins are also required for the trafficking of the raft-associated arginine permease Can1 to the plasma membrane, a process that requires sphingolipid synthesis and actin polymerization. Together with previous work, our findings suggest that Slm proteins are subject to regulation by multiple signals, including PI4,5P2, TORC2, and sphingolipids, and may thus integrate inputs from different signaling pathways to temporally and spatially control actin polarization.

2002 ◽  
Vol 13 (9) ◽  
pp. 3281-3293 ◽  
Author(s):  
Jaya Bandyopadhyay ◽  
Jiyeon Lee ◽  
Jungsoo Lee ◽  
Jin Il Lee ◽  
Jae-Ran Yu ◽  
...  

Calcineurin is a Ca2+-calmodulin–dependent serine/threonine protein phosphatase that has been implicated in various signaling pathways. Here we report the identification and characterization of calcineurin genes in Caenorhabditis elegans (cna-1 and cnb-1), which share high homology with Drosophila and mammalian calcineurin genes. C. elegans calcineurin binds calcium and functions as a heterodimeric protein phosphatase establishing its biochemical conservation in the nematode. Calcineurin is expressed in hypodermal seam cells, body-wall muscle, vulva muscle, neuronal cells, and in sperm and the spermatheca. cnb-1 mutants showed pleiotropic defects including lethargic movement and delayed egg-laying. Interestingly, these characteristic defects resembled phenotypes observed in gain-of-function mutants ofunc-43/Ca2+-calmodulin–dependent protein kinase II (CaMKII) and goa-1/Go-protein α-subunit. Double mutants of cnb-1 andunc-43(gf) displayed an apparent synergistic severity of movement and egg-laying defects, suggesting that calcineurin may have an antagonistic role in CaMKII-regulated phosphorylation signaling pathways in C. elegans.


2003 ◽  
Vol 161 (4) ◽  
pp. 769-777 ◽  
Author(s):  
Laird C. Sheldahl ◽  
Diane C. Slusarski ◽  
Petra Pandur ◽  
Jeffrey R. Miller ◽  
Michael Kühl ◽  
...  

Wnt ligands and Frizzled (Fz) receptors have been shown to activate multiple intracellular signaling pathways. Activation of the Wnt–β-catenin pathway has been described in greatest detail, but it has been reported that Wnts and Fzs also activate vertebrate planar cell polarity (PCP) and Wnt–Ca2+ pathways. Although the intracellular protein Dishevelled (Dsh) plays a dual role in both the Wnt–β-catenin and the PCP pathways, its potential involvement in the Wnt–Ca2+ pathway has not been investigated. Here we show that a Dsh deletion construct, XDshΔDIX, which is sufficient for activation of the PCP pathway, is also sufficient for activation of three effectors of the Wnt–Ca2+ pathway: Ca2+ flux, PKC, and calcium/calmodulin-dependent protein kinase II (CamKII). Furthermore, we find that interfering with endogenous Dsh function reduces the activation of PKC by Xfz7 and interferes with normal heart development. These data suggest that the Wnt–Ca2+ pathway utilizes Dsh, thereby implicating Dsh as a component of all reported Fz signaling pathways.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Na An ◽  
Yu Chen ◽  
Yanfen Xing ◽  
Honghua Wu ◽  
Xiongyi Gao ◽  
...  

Previous studies have demonstrated that calcium-/calmodulin-dependent protein kinase II (CaMKII) and calcineurin A-nuclear factor of activated T-cell (CnA-NFAT) signaling pathways play key roles in cardiac hypertrophy (CH). However, the interaction between CaMKII and CnA-NFAT signaling remains unclear. H9c2 cells were cultured and treated with angiotensin II (Ang II) with or without silenced CaMKIIδ (siCaMKII) and cyclosporine A (CsA, a calcineurin inhibitor) and subsequently treated with Wenxin Keli (WXKL). Patch clamp recording was conducted to assess L-type Ca2+ current (ICa-L), and the expression of proteins involved in signaling pathways was measured by western blotting. Myocardial cytoskeletal protein and nuclear translocation of target proteins were assessed by immunofluorescence. The results indicated that siCaMKII suppressed Ang II-induced CH, as evidenced by reduced cell surface area and ICa-L. Notably, siCaMKII inhibited Ang II-induced activation of CnA and NFATc4 nuclear transfer. Inflammatory signaling was inhibited by siCaMKII and WXKL. Interestingly, CsA inhibited CnA-NFAT pathway expression but activated CaMKII signaling. In conclusion, siCaMKII may improve CH, possibly by blocking CnA-NFAT and MyD88 signaling, and WXKL has a similar effect. These data suggest that inhibiting CaMKII, but not CnA, may be a promising approach to attenuate CH and arrhythmia progression.


2004 ◽  
Vol 135 (3) ◽  
pp. 1280-1293 ◽  
Author(s):  
Li Ma ◽  
Shuping Liang ◽  
Russell L. Jones ◽  
Ying-Tang Lu

Sign in / Sign up

Export Citation Format

Share Document