scholarly journals The aromatic amino acid pathway branches at L-arogenate in Euglena gracilis.

1981 ◽  
Vol 1 (5) ◽  
pp. 426-438 ◽  
Author(s):  
G S Byng ◽  
R J Whitaker ◽  
C L Shapiro ◽  
R A Jensen

The recently characterized amino acid L-arogenate (Zamir et al., J. Am. Chem. Soc. 102:4499-4504, 1980) may be a precursor of either L-phenylalanine or L-tyrosine in nature. Euglena gracilis is the first example of an organism that uses L-arogenate as the sole precursor of both L-tyrosine and L-phenylalanine, thereby creating a pathway in which L-arogenate rather than prephenate becomes the metabolic branch point. E. gracilis ATCC 12796 was cultured in the light under myxotrophic conditions and harvested in late exponential phase before extract preparation for enzymological assays. Arogenate dehydrogenase was dependent upon nicotinamide adenine dinucleotide phosphate for activity. L-Tyrosine inhibited activity effectively with kinetics that were competitive with respect to L-arogenate and noncompetitive with respect to nicotinamide adenine dinucleotide phosphate. The possible inhibition of arogenate dehydratase by L-phenylalanine has not yet been determined. Beyond the latter uncertainty, the overall regulation of aromatic biosynthesis was studied through the characterization of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase and chorismate mutase. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase was subject to noncompetitive inhibition by L-tyrosine with respect to either of the two substrates. Chorismate mutase was feedback inhibited with equal effectiveness by either L-tyrosine or L-phenylalanine. L-Tryptophan activated activity of chorismate mutase, a pH-dependent effect in which increased activation was dramatic above pH 7.8 L-Arogenate did not affect activity of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase or of chorismate mutase. Four species of prephenate aminotransferase activity were separated after ion-exchange chromatography. One aminotransferase exhibited a narrow range of substrate specificity, recognizing only the combination of L-glutamate with prephenate, phenylpyruvate, or 4-hydroxyphenylpyruvate. Possible natural relationships between Euglena spp. and fungi previously considered in the literature are discussed in terms of data currently available to define enzymological variation in the shikimate pathway.

1981 ◽  
Vol 1 (5) ◽  
pp. 426-438
Author(s):  
G S Byng ◽  
R J Whitaker ◽  
C L Shapiro ◽  
R A Jensen

The recently characterized amino acid L-arogenate (Zamir et al., J. Am. Chem. Soc. 102:4499-4504, 1980) may be a precursor of either L-phenylalanine or L-tyrosine in nature. Euglena gracilis is the first example of an organism that uses L-arogenate as the sole precursor of both L-tyrosine and L-phenylalanine, thereby creating a pathway in which L-arogenate rather than prephenate becomes the metabolic branch point. E. gracilis ATCC 12796 was cultured in the light under myxotrophic conditions and harvested in late exponential phase before extract preparation for enzymological assays. Arogenate dehydrogenase was dependent upon nicotinamide adenine dinucleotide phosphate for activity. L-Tyrosine inhibited activity effectively with kinetics that were competitive with respect to L-arogenate and noncompetitive with respect to nicotinamide adenine dinucleotide phosphate. The possible inhibition of arogenate dehydratase by L-phenylalanine has not yet been determined. Beyond the latter uncertainty, the overall regulation of aromatic biosynthesis was studied through the characterization of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase and chorismate mutase. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase was subject to noncompetitive inhibition by L-tyrosine with respect to either of the two substrates. Chorismate mutase was feedback inhibited with equal effectiveness by either L-tyrosine or L-phenylalanine. L-Tryptophan activated activity of chorismate mutase, a pH-dependent effect in which increased activation was dramatic above pH 7.8 L-Arogenate did not affect activity of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase or of chorismate mutase. Four species of prephenate aminotransferase activity were separated after ion-exchange chromatography. One aminotransferase exhibited a narrow range of substrate specificity, recognizing only the combination of L-glutamate with prephenate, phenylpyruvate, or 4-hydroxyphenylpyruvate. Possible natural relationships between Euglena spp. and fungi previously considered in the literature are discussed in terms of data currently available to define enzymological variation in the shikimate pathway.


Author(s):  
M. Arif Hayat

Although it is recognized that niacin (pyridine-3-carboxylic acid), incorporated as the amide in nicotinamide adenine dinucleotide (NAD) or in nicotinamide adenine dinucleotide phosphate (NADP), is a cofactor in hydrogen transfer in numerous enzyme reactions in all organisms studied, virtually no information is available on the effect of this vitamin on a cell at the submicroscopic level. Since mitochondria act as sites for many hydrogen transfer processes, the possible response of mitochondria to niacin treatment is, therefore, of critical interest.Onion bulbs were placed on vials filled with double distilled water in the dark at 25°C. After two days the bulbs and newly developed root system were transferred to vials containing 0.1% niacin. Root tips were collected at ¼, ½, 1, 2, 4, and 8 hr. intervals after treatment. The tissues were fixed in glutaraldehyde-OsO4 as well as in 2% KMnO4 according to standard procedures. In both cases, the tissues were dehydrated in an acetone series and embedded in Reynolds' lead citrate for 3-10 minutes.


Sign in / Sign up

Export Citation Format

Share Document