scholarly journals Genetic regulation of the qa gene cluster of Neurospora crassa: induction of qa messenger ribonucleic acid and dependency on qa-1 function.

1981 ◽  
Vol 1 (9) ◽  
pp. 829-835 ◽  
Author(s):  
W R Reinert ◽  
V B Patel ◽  
N H Giles

An in vitro protein-synthesizing system (rabbit reticulocyte) was programmed with total polyadenylated messenger ribonucleic acid from wild type and various mutants in the qa gene cluster of Neurospora crassa. The products of two of the qa genes, quinate dehydrogenase (qa-3+) and dehydroshikimate dehydratase (qa-4+), were identified by specific immunoprecipitation and sodium dodecyl sulfate-slab gel electrophoresis. The results indicated that for both genes induction of a specific enzyme activity by quinic acid depends on the de novo synthesis of a specific polypeptide and on the de novo appearance of specific messenger ribonucleic acid detectable by the in vitro translation assay. Furthermore, the results indicated that the appearance of this messenger ribonucleic acid is under the control of the qa-1 gene. The simplest interpretation of these results appears to be that induction of enzyme activity in the qa system is mediated by events at the transcriptional level.

1981 ◽  
Vol 1 (9) ◽  
pp. 829-835
Author(s):  
W R Reinert ◽  
V B Patel ◽  
N H Giles

An in vitro protein-synthesizing system (rabbit reticulocyte) was programmed with total polyadenylated messenger ribonucleic acid from wild type and various mutants in the qa gene cluster of Neurospora crassa. The products of two of the qa genes, quinate dehydrogenase (qa-3+) and dehydroshikimate dehydratase (qa-4+), were identified by specific immunoprecipitation and sodium dodecyl sulfate-slab gel electrophoresis. The results indicated that for both genes induction of a specific enzyme activity by quinic acid depends on the de novo synthesis of a specific polypeptide and on the de novo appearance of specific messenger ribonucleic acid detectable by the in vitro translation assay. Furthermore, the results indicated that the appearance of this messenger ribonucleic acid is under the control of the qa-1 gene. The simplest interpretation of these results appears to be that induction of enzyme activity in the qa system is mediated by events at the transcriptional level.


Biochemistry ◽  
1976 ◽  
Vol 15 (25) ◽  
pp. 5506-5511 ◽  
Author(s):  
Brian A. Larkins ◽  
Richard A. Jones ◽  
C. Y. Tsai

1986 ◽  
Vol 6 (12) ◽  
pp. 4433-4439
Author(s):  
R E Swiderski ◽  
J D O'Connor

The induction of DOPA decarboxylase (DDC) activity by 20-OH-ecdysone (20-OHE) in a subline of Drosophila melanogaster Kc cells was investigated. Cells cultured in the continuous presence of the steroid hormone exhibited a 96-h temporal lag prior to a peak of DDC enzyme activity while arrested in the G2 phase of the cell cycle. The concentration of Ddc RNA increased sixfold between 72 and 96 h after initial exposure to hormone. Similarly, this increase was correlated temporally with a 26-fold increase in DDC enzyme activity. The Kc Ddc primary transcript, processing intermediate, and mature mRNA all were approximately 500 nucleotides longer than the corresponding transcripts observed for newly eclosed adult D. melanogaster. In vitro translation of poly(A)+ RNA from Kc cells resulted in an immunoprecipitable polypeptide which exhibited similar mobility on sodium dodecyl sulfate gels to that of DDC synthesized in vitro by larval epidermal poly(A)+ RNA.


1986 ◽  
Vol 6 (12) ◽  
pp. 4433-4439 ◽  
Author(s):  
R E Swiderski ◽  
J D O'Connor

The induction of DOPA decarboxylase (DDC) activity by 20-OH-ecdysone (20-OHE) in a subline of Drosophila melanogaster Kc cells was investigated. Cells cultured in the continuous presence of the steroid hormone exhibited a 96-h temporal lag prior to a peak of DDC enzyme activity while arrested in the G2 phase of the cell cycle. The concentration of Ddc RNA increased sixfold between 72 and 96 h after initial exposure to hormone. Similarly, this increase was correlated temporally with a 26-fold increase in DDC enzyme activity. The Kc Ddc primary transcript, processing intermediate, and mature mRNA all were approximately 500 nucleotides longer than the corresponding transcripts observed for newly eclosed adult D. melanogaster. In vitro translation of poly(A)+ RNA from Kc cells resulted in an immunoprecipitable polypeptide which exhibited similar mobility on sodium dodecyl sulfate gels to that of DDC synthesized in vitro by larval epidermal poly(A)+ RNA.


1974 ◽  
Vol 144 (2) ◽  
pp. 413-426 ◽  
Author(s):  
W I P Mainwaring ◽  
F R Mangan ◽  
R A Irving ◽  
D A Jones

1. Aldolase was selected as a suitable marker for following the androgenic regulation of mRNA synthesis in the prostate gland. 2. Antibodies raised in rabbits against crystalline prostate aldolase were used to monitor the synthesis of this androgen-induced enzyme after hormonal stimulation of castrated animals, by using procedures in vivo and in vitro for the translation of prostate poly(A)-rich mRNA. 3. After androgenic stimulation in vivo the poly(A)-rich mRNA was isolated from the prostate gland and other tissues of castrated rats, and added to a protein-synthesizing system in vitro derived from Krebs II ascites-tumour cells. By using this approach it was found that androgens regulate the synthesis of aldolase mRNA in a highly tissue-specific manner. Stimulation of aldolase mRNA synthesis reached a maximum after 8h of androgenic treatment and then declined. 4. The androgenic control of aldolase mRNA synthesis was also investigated in vivo. After treatment of castrated animals with various steroids in vivo [35S]methionine was injected directly into the prostate gland, and labelled aldolase was selectively precipitated from isolated polyribosomes with anti-aldolase serum. The regulation of aldolase mRNA synthesis in the prostate gland was stringently steroid-specific and could only be evoked by androgens. After a single injection of testosterone, aldolase synthesis reached a maximum after 16h of hormonal stimulation and then declined. 5. Although androgens exert significant control over transcriptional processes in the prostate gland, and appear to regulate the synthesis of aldolase mRNA de novo, the possibility exists for additional means of control at the translational level of aldolase synthesis. The results are discussed in the context of the overall mechanism of action of androgens.


Planta ◽  
1976 ◽  
Vol 130 (3) ◽  
pp. 269-273 ◽  
Author(s):  
Margaret E. Gordon ◽  
Peter I. Payne

Sign in / Sign up

Export Citation Format

Share Document