scholarly journals Identification of tyrosine 706 in the kinase insert as the major colony-stimulating factor 1 (CSF-1)-stimulated autophosphorylation site in the CSF-1 receptor in a murine macrophage cell line.

1990 ◽  
Vol 10 (6) ◽  
pp. 2991-3002 ◽  
Author(s):  
P van der Geer ◽  
T Hunter

The receptor for colony-stimulating factor 1 (CSF-1) is a ligand-activated protein-tyrosine kinase. It has been shown previously that the CSF-1 receptor is phosphorylated on serine in vivo and that phosphorylation on tyrosine can be induced by stimulation with CSF-1. We studied the phosphorylation of the CSF-1 receptor by using the BAC1.2F5 murine macrophage cell line, which naturally expresses CSF-1 receptors. Two-dimensional tryptic phosphopeptide mapping showed that the CSF-1 receptor is phosphorylated on several different serine residues in vivo. Stimulation with CSF-1 at 37 degrees C resulted in rapid phosphorylation on tyrosine at one major site and one or two minor sites. We identified the major site as Tyr-706. The identity of Tyr-706 was confirmed by mutagenesis. This residue is located within the kinase insert domain. There was no evidence that Tyr-973 (equivalent to Tyr-969 in the human CSF-1 receptor) was phosphorylated following CSF-1 stimulation. When cells were stimulated with CSF-1 at 4 degrees C, additional phosphotyrosine-containing phosphopeptides were detected and the level of phosphorylation of the individual phosphotyrosine-containing phosphopeptides was substantially increased. In addition, we show that CSF-1 receptors are capable of autophosphorylation at six to eight major sites in vitro.

1990 ◽  
Vol 10 (6) ◽  
pp. 2991-3002
Author(s):  
P van der Geer ◽  
T Hunter

The receptor for colony-stimulating factor 1 (CSF-1) is a ligand-activated protein-tyrosine kinase. It has been shown previously that the CSF-1 receptor is phosphorylated on serine in vivo and that phosphorylation on tyrosine can be induced by stimulation with CSF-1. We studied the phosphorylation of the CSF-1 receptor by using the BAC1.2F5 murine macrophage cell line, which naturally expresses CSF-1 receptors. Two-dimensional tryptic phosphopeptide mapping showed that the CSF-1 receptor is phosphorylated on several different serine residues in vivo. Stimulation with CSF-1 at 37 degrees C resulted in rapid phosphorylation on tyrosine at one major site and one or two minor sites. We identified the major site as Tyr-706. The identity of Tyr-706 was confirmed by mutagenesis. This residue is located within the kinase insert domain. There was no evidence that Tyr-973 (equivalent to Tyr-969 in the human CSF-1 receptor) was phosphorylated following CSF-1 stimulation. When cells were stimulated with CSF-1 at 4 degrees C, additional phosphotyrosine-containing phosphopeptides were detected and the level of phosphorylation of the individual phosphotyrosine-containing phosphopeptides was substantially increased. In addition, we show that CSF-1 receptors are capable of autophosphorylation at six to eight major sites in vitro.


Immunobiology ◽  
1988 ◽  
Vol 178 (3) ◽  
pp. 261-274 ◽  
Author(s):  
Ina S. Klasen ◽  
Johannes P. de Jong ◽  
Jane S.A. Voerman ◽  
Renée M.T. Ladestein ◽  
Pieter J.M. Leenen ◽  
...  

Endocrinology ◽  
1995 ◽  
Vol 136 (10) ◽  
pp. 4285-4292 ◽  
Author(s):  
J H Shin ◽  
A Kukita ◽  
K Ohki ◽  
T Katsuki ◽  
O Kohashi

2000 ◽  
Vol 347 (1) ◽  
pp. 313-320 ◽  
Author(s):  
Lindsay F. FOWLES ◽  
Katryn J. STACEY ◽  
Denese MARKS ◽  
John A. HAMILTON ◽  
David A. HUME

Macrophage colony-stimulating factor (CSF-1) binds to a receptor (CSF-1R) encoded by the c-fms proto-oncogene and activates transcription of the urokinase plasminogen activator (uPA) gene in murine bone-marrow-derived macrophages. This article demonstrates that the murine macrophage cell line RAW264 responds to CSF-1 with inducible phosphorylation of cytoplasmic proteins on tyrosine residues but fails to induce transcription of uPA. The defect was correlated with a selective failure to maintain CSF-1Rs on the cell surface, whereas all RAW264 cells contained abundant CSF-1Rs within the presumptive Golgi/endoplasmic reticulum compartment. Transfection with a CSF-1R expression plasmid permitted CSF-1-dependent activation of the signalling pathway targeting an Ets/AP1 (activator protein 1) element in the uPA promoter that has been shown previously to be a target of oncogenic ras and protein kinase C pathways. Mutation of the expressed CSF-1R at either Y807 or Y559, sites of receptor tyrosine phosphorylation implicated in signal transduction, reduced but did not abolish uPA promoter activation by CSF-1. Activation by mutant CSF-1R plasmids was additive; there was no evidence of mutual complementation. The results indicate that maintenance of elevated uPA transcription by CSF-1 requires new receptors emerging continuously on the cell surface. Parallel, partly redundant, signalling pathways arising from phosphorylated tyrosines on the CSF-1R activate multiple cis-acting elements on the complex uPA promoter.


Sign in / Sign up

Export Citation Format

Share Document