Definition of the minimal simian virus 40 large T antigen- and adenovirus E1A-binding domain in the retinoblastoma gene product

1990 ◽  
Vol 10 (7) ◽  
pp. 3761-3769
Author(s):  
W G Kaelin ◽  
M E Ewen ◽  
D M Livingston

It has previously been demonstrated that the simian virus 40 large T antigen and adenovirus E1A proteins can form complexes with the retinoblastoma susceptibility gene product (RB). We studied the ability of these proteins to bind to mutant RB proteins in vitro. A region of RB spanning residues 379 to 792 was found to be both necessary and sufficient for binding to T or E1A. Furthermore, this region of RB contains sufficient structural information to mimic wild-type RB in its ability to distinguish between wild-type T and the transformation-defective T mutant K1. The results of competition experiments with peptide analogs of the RB-binding sequence in T suggest that this region of RB makes direct contact with a short colinear region of T, i.e., residues 102 to 115, previously implicated in both transformation and RB binding.

1990 ◽  
Vol 10 (7) ◽  
pp. 3761-3769 ◽  
Author(s):  
W G Kaelin ◽  
M E Ewen ◽  
D M Livingston

It has previously been demonstrated that the simian virus 40 large T antigen and adenovirus E1A proteins can form complexes with the retinoblastoma susceptibility gene product (RB). We studied the ability of these proteins to bind to mutant RB proteins in vitro. A region of RB spanning residues 379 to 792 was found to be both necessary and sufficient for binding to T or E1A. Furthermore, this region of RB contains sufficient structural information to mimic wild-type RB in its ability to distinguish between wild-type T and the transformation-defective T mutant K1. The results of competition experiments with peptide analogs of the RB-binding sequence in T suggest that this region of RB makes direct contact with a short colinear region of T, i.e., residues 102 to 115, previously implicated in both transformation and RB binding.


1987 ◽  
Vol 7 (12) ◽  
pp. 4255-4265 ◽  
Author(s):  
W Markland ◽  
A E Smith ◽  
B L Roberts

An in vitro nuclear translocation system is described in which isolated rat liver nuclei were incubated in a defined buffered medium containing radiolabeled or fluorescently labeled exogenous proteins. The nuclei were rapidly recovered, extracted, and analyzed for the presence of associated radiolabeled or fluorescently labeled proteins. The isolated nuclei exhibited the same specificity for protein uptake as seen previously in vivo, accumulating simian virus 40 wild-type large-T antigen and p53 while excluding a cytoplasmic variant of large-T antigen (d10) and bovine serum albumin. The rapid nuclear accumulation of wild-type large-T antigen was shown to be selective and dependent upon the recognition of a wild-type nuclear location signal, ATP and temperature dependent, and unidirectional. Taken together, the data suggest that in our in vitro system the nuclear translocation of wild-type large-T antigen exhibits some of the characteristics of an active transport process.


1987 ◽  
Vol 7 (12) ◽  
pp. 4255-4265
Author(s):  
W Markland ◽  
A E Smith ◽  
B L Roberts

An in vitro nuclear translocation system is described in which isolated rat liver nuclei were incubated in a defined buffered medium containing radiolabeled or fluorescently labeled exogenous proteins. The nuclei were rapidly recovered, extracted, and analyzed for the presence of associated radiolabeled or fluorescently labeled proteins. The isolated nuclei exhibited the same specificity for protein uptake as seen previously in vivo, accumulating simian virus 40 wild-type large-T antigen and p53 while excluding a cytoplasmic variant of large-T antigen (d10) and bovine serum albumin. The rapid nuclear accumulation of wild-type large-T antigen was shown to be selective and dependent upon the recognition of a wild-type nuclear location signal, ATP and temperature dependent, and unidirectional. Taken together, the data suggest that in our in vitro system the nuclear translocation of wild-type large-T antigen exhibits some of the characteristics of an active transport process.


1989 ◽  
Vol 264 (27) ◽  
pp. 16160-16164
Author(s):  
I C Taylor ◽  
W Solomon ◽  
B M Weiner ◽  
E Paucha ◽  
M Bradley ◽  
...  

1984 ◽  
Vol 4 (2) ◽  
pp. 232-239
Author(s):  
F Van Roy ◽  
L Fransen ◽  
W Fiers

Immune complex kinase assays in the simian virus 40 system were performed by incubation of immunoprecipitates containing tumor antigens with [gamma-32P]ATP, followed by analysis of any phosphoacceptor proteins. These assays yielded mainly the viral large T-antigen and, in particular, the associated cellular p53 as endogenous substrates. The nature of these substrates was confirmed by proteolysis techniques. Under specific conditions, casein could be used as an exogenous substrate as well. The kinase reactions showed preference for ATP and MgCl2 instead of GTP or MnCl2. Both phosphoserine and phosphothreonine, but in no case phosphotyrosine, were detected after an immune complex kinase reaction. Apparently, several in vivo phosphorylation sites were recognized in vitro in both large T-antigen and p53, but the presence of some artifactual sites could not be completely excluded. Although contaminating kinases were detectable in the immune complexes, at least the p53 molecules were phosphorylated in vitro in a more specific way. This followed from several characteristics of the immune complex kinase reactions and especially from the strong inhibition of p53 phosphorylation by two anti-large-T monoclonal antibodies. It was shown that large T-antigen showed associated kinase activity, although none of our results could unambiguously demonstrate an intrinsic kinase activity of this protein. Finally, anti-p53 monoclonal antibodies only slightly affected in vitro phosphorylation reactions, whereas a p53 molecule from a simian virus 40-free, chemically transformed human cell line was not phosphorylated in vitro under any condition tested. Thus, it is highly unlikely that the p53 molecule per se carries intrinsic or even associated kinase activities.


1988 ◽  
Vol 8 (3) ◽  
pp. 1380-1384 ◽  
Author(s):  
V Cherington ◽  
M Brown ◽  
E Paucha ◽  
J St Louis ◽  
B M Spiegelman ◽  
...  

Wild-type simian virus 40 large T antigen is very effective at blocking adipocyte differentiation in 3T3-F442A cells as assayed by triglyceride accumulation, induction of glycerophosphate dehydrogenase activity, and expression of mRNAs for glycerophosphate dehydrogenase, the adipocyte serine protease adipsin, and the putative lipid-binding protein adipocyte P2. Point mutants defective for either origin-specific DNA binding or transformation blocked differentiation as completely as wild type.


1990 ◽  
Vol 10 (12) ◽  
pp. 6664-6673
Author(s):  
T E Riley ◽  
A Follin ◽  
N C Jones ◽  
P S Jat

Various mutants of adenovirus E1A were assayed for their ability to complement the growth defect at the nonpermissive temperature for the cell line tsa14 which was isolated by immortalizing rat embryo fibroblasts with the thermolabile large T antigen of tsA58. This cell line grows indefinitely at the permissive temperature but undergoes rapid growth arrest upon shift up to the nonpermissive temperature. Since this growth arrest can be overcome by introduction of wild-type simian virus 40 large T antigen, human papillomavirus 16 E7, and adenovirus E1A, the tsa14 cells provided an excellent system for defining regions of E1A necessary for complementation of the growth defect. We demonstrate that conserved region 1 (CR1) is the region of E1A required for complementation. While CR2 of E1A has been shown to be required for the immortalization of primary cells and is also necessary for the binding of the 105-kDa retinoblastoma protein, mutations within this region did not abrogate complementation of the growth defect. However, since both CR1 and CR2 have previously been shown to be absolutely required for immortalization of primary cells by adenovirus E1A, this evidence suggests that the tsa14 system assays for the maintenance of proliferation and that this requires CR1.


1990 ◽  
Vol 10 (12) ◽  
pp. 6664-6673 ◽  
Author(s):  
T E Riley ◽  
A Follin ◽  
N C Jones ◽  
P S Jat

Various mutants of adenovirus E1A were assayed for their ability to complement the growth defect at the nonpermissive temperature for the cell line tsa14 which was isolated by immortalizing rat embryo fibroblasts with the thermolabile large T antigen of tsA58. This cell line grows indefinitely at the permissive temperature but undergoes rapid growth arrest upon shift up to the nonpermissive temperature. Since this growth arrest can be overcome by introduction of wild-type simian virus 40 large T antigen, human papillomavirus 16 E7, and adenovirus E1A, the tsa14 cells provided an excellent system for defining regions of E1A necessary for complementation of the growth defect. We demonstrate that conserved region 1 (CR1) is the region of E1A required for complementation. While CR2 of E1A has been shown to be required for the immortalization of primary cells and is also necessary for the binding of the 105-kDa retinoblastoma protein, mutations within this region did not abrogate complementation of the growth defect. However, since both CR1 and CR2 have previously been shown to be absolutely required for immortalization of primary cells by adenovirus E1A, this evidence suggests that the tsa14 system assays for the maintenance of proliferation and that this requires CR1.


1984 ◽  
Vol 4 (2) ◽  
pp. 232-239 ◽  
Author(s):  
F Van Roy ◽  
L Fransen ◽  
W Fiers

Immune complex kinase assays in the simian virus 40 system were performed by incubation of immunoprecipitates containing tumor antigens with [gamma-32P]ATP, followed by analysis of any phosphoacceptor proteins. These assays yielded mainly the viral large T-antigen and, in particular, the associated cellular p53 as endogenous substrates. The nature of these substrates was confirmed by proteolysis techniques. Under specific conditions, casein could be used as an exogenous substrate as well. The kinase reactions showed preference for ATP and MgCl2 instead of GTP or MnCl2. Both phosphoserine and phosphothreonine, but in no case phosphotyrosine, were detected after an immune complex kinase reaction. Apparently, several in vivo phosphorylation sites were recognized in vitro in both large T-antigen and p53, but the presence of some artifactual sites could not be completely excluded. Although contaminating kinases were detectable in the immune complexes, at least the p53 molecules were phosphorylated in vitro in a more specific way. This followed from several characteristics of the immune complex kinase reactions and especially from the strong inhibition of p53 phosphorylation by two anti-large-T monoclonal antibodies. It was shown that large T-antigen showed associated kinase activity, although none of our results could unambiguously demonstrate an intrinsic kinase activity of this protein. Finally, anti-p53 monoclonal antibodies only slightly affected in vitro phosphorylation reactions, whereas a p53 molecule from a simian virus 40-free, chemically transformed human cell line was not phosphorylated in vitro under any condition tested. Thus, it is highly unlikely that the p53 molecule per se carries intrinsic or even associated kinase activities.


Sign in / Sign up

Export Citation Format

Share Document