scholarly journals Mapping an origin of DNA replication at a single-copy locus in exponentially proliferating mammalian cells.

1990 ◽  
Vol 10 (9) ◽  
pp. 4685-4689 ◽  
Author(s):  
L T Vassilev ◽  
W C Burhans ◽  
M L DePamphilis

A general method for determining the physical location of an origin of bidirectional DNA replication has been developed recently and shown to be capable of correctly identifying the simian virus 40 origin of replication (L. Vassilev and E. M. Johnson, Nucleic Acids Res. 17:7693-7705, 1989). The advantage of this method over others previously reported is that it avoids the use of metabolic inhibitors, the requirement for cell synchronization, and the need for multiple copies of the origin sequence. Application of this method to exponentially growing Chinese hamster ovary cells containing the nonamplified, single-copy dihydrofolate reductase gene locus revealed that DNA replication begins bidirectionally in an initiation zone approximately 2.5 kilobases long centered about 17 kilobases downstream of the DHFR gene, coinciding with previously described early replicating sequences. These results demonstrate the utility of this mapping protocol for identifying cellular origins of replication and suggest that the same cellular origin is used in both the normal and the amplified DHFR locus.

1990 ◽  
Vol 10 (9) ◽  
pp. 4685-4689
Author(s):  
L T Vassilev ◽  
W C Burhans ◽  
M L DePamphilis

A general method for determining the physical location of an origin of bidirectional DNA replication has been developed recently and shown to be capable of correctly identifying the simian virus 40 origin of replication (L. Vassilev and E. M. Johnson, Nucleic Acids Res. 17:7693-7705, 1989). The advantage of this method over others previously reported is that it avoids the use of metabolic inhibitors, the requirement for cell synchronization, and the need for multiple copies of the origin sequence. Application of this method to exponentially growing Chinese hamster ovary cells containing the nonamplified, single-copy dihydrofolate reductase gene locus revealed that DNA replication begins bidirectionally in an initiation zone approximately 2.5 kilobases long centered about 17 kilobases downstream of the DHFR gene, coinciding with previously described early replicating sequences. These results demonstrate the utility of this mapping protocol for identifying cellular origins of replication and suggest that the same cellular origin is used in both the normal and the amplified DHFR locus.


1981 ◽  
Vol 1 (9) ◽  
pp. 854-864 ◽  
Author(s):  
S Subramani ◽  
R Mulligan ◽  
P Berg

A mouse complementary deoxyribonucleic acid segment coding for the enzyme dihydrofolate reductase has been cloned in two general classes of vectors containing simian virus 40 deoxyribonucleic acid: (i) those that can be propagated as virions in permissive cells and (ii) those that can be introduced into and maintained stably in various mammalian cells. Both types of vectors express the mouse dihydrofolate reductase by using signals supplied by simian virus 40 deoxyribonucleic acid sequences. Moreover, plasmid vectors carrying the complementary deoxyribonucleic acid segment can complement Chinese hamster ovary cells lacking dihydrofolate reductase.


1981 ◽  
Vol 1 (9) ◽  
pp. 854-864
Author(s):  
S Subramani ◽  
R Mulligan ◽  
P Berg

A mouse complementary deoxyribonucleic acid segment coding for the enzyme dihydrofolate reductase has been cloned in two general classes of vectors containing simian virus 40 deoxyribonucleic acid: (i) those that can be propagated as virions in permissive cells and (ii) those that can be introduced into and maintained stably in various mammalian cells. Both types of vectors express the mouse dihydrofolate reductase by using signals supplied by simian virus 40 deoxyribonucleic acid sequences. Moreover, plasmid vectors carrying the complementary deoxyribonucleic acid segment can complement Chinese hamster ovary cells lacking dihydrofolate reductase.


1983 ◽  
Vol 3 (9) ◽  
pp. 1598-1608
Author(s):  
R J Kaufman ◽  
P A Sharp

Dihydrofolate reductase (DHFR) synthesis is regulated in a growth-dependent fashion. Dividing cells synthesize DHFR at a 10-fold-higher rate than do stationary cells. To study this growth-dependent synthesis. DHFR genes have been constructed from a DHFR cDNA segment, the adenovirus major late promoter, and fragments of simian virus 40 (SV40) which provide signals for polyadenylation. These genes have been introduced into Chinese hamster ovary cells. The DHFR mRNAs produced in different transformants are identical at their 5' ends, but differ in sequences in their 3' ends as different sites are utilized for polyadenylation. Three transformants that utilize either DHFR polyadenylation signals or the SV40 late polyadenylation signal exhibit growth-dependent DHFR synthesis. The level of DHFR mRNA in growing cells is approximately 10 times that in stationary cells for these transformants. This growth-dependent DHFR mRNA production probably results from posttranscriptional events. In contrast, three transformants that utilize the SV40 early polyadenylation signal and another transformant that utilizes a cellular polyadenylation signal do not exhibit growth-dependent DHFR synthesis. In these three cell lines, the fraction of mRNAs polyadenylated at different sites in a tandem array shifts between growing and stationary cells. These results suggest that the metabolic state of the cell is important in determining either the efficiency of polyadenylation at various sites or the stability of mRNA polyadenylated at various sites.


1994 ◽  
Vol 14 (10) ◽  
pp. 6489-6496 ◽  
Author(s):  
Y Ishimi ◽  
K Matsumoto ◽  
R Ohba

We reported that DNA replication initiates from the region containing an autonomously replicating sequence from Saccharomyces cerevisiae when negatively supercoiled plasmid DNA is incubated with the proteins required for simian virus 40 DNA replication (Y. Ishimi and K. Matsumoto, Proc. Natl. Acad. Sci. USA 90:5399-5403, 1993). In this study, the DNAs containing initiation zones from mammalian cells were replicated in this model system. When negatively supercoiled DNA containing an initiation zone (2 kb) upstream of the human c-myc gene was incubated with simian virus 40 T antigen as a DNA helicase, HSSB (also called replication protein A), and DNA polymerase alpha-primase complex isolated from HeLa cells, DNA replication was specifically initiated from the center of the initiation zone, which was elongated bidirectionally in the presence of a DNA swivelase. Without HSSB, the level of DNA synthesis was significantly reduced and the localized initiation could not be detected, indicating that HSSB plays an essential role in the initiation of DNA replication. The digestion of negatively supercoiled template DNA with a single-strand-specific nuclease revealed that HSSB stimulated DNA unwinding in the center of the initiation zone where the DNA duplex is relatively unstable. In contrast, DNA replication started from a broad region of an initiation zone downstream of the dihydrofolate reductase gene from chinese hamster ovary cells, but the center of the region was mapped near the origin of bidirectional DNA replication. These results suggested that this system mimics a fundamental process of initiation of eukaryotic DNA replication. The mechanism of initiation is discussed.


1983 ◽  
Vol 3 (9) ◽  
pp. 1598-1608 ◽  
Author(s):  
R J Kaufman ◽  
P A Sharp

Dihydrofolate reductase (DHFR) synthesis is regulated in a growth-dependent fashion. Dividing cells synthesize DHFR at a 10-fold-higher rate than do stationary cells. To study this growth-dependent synthesis. DHFR genes have been constructed from a DHFR cDNA segment, the adenovirus major late promoter, and fragments of simian virus 40 (SV40) which provide signals for polyadenylation. These genes have been introduced into Chinese hamster ovary cells. The DHFR mRNAs produced in different transformants are identical at their 5' ends, but differ in sequences in their 3' ends as different sites are utilized for polyadenylation. Three transformants that utilize either DHFR polyadenylation signals or the SV40 late polyadenylation signal exhibit growth-dependent DHFR synthesis. The level of DHFR mRNA in growing cells is approximately 10 times that in stationary cells for these transformants. This growth-dependent DHFR mRNA production probably results from posttranscriptional events. In contrast, three transformants that utilize the SV40 early polyadenylation signal and another transformant that utilizes a cellular polyadenylation signal do not exhibit growth-dependent DHFR synthesis. In these three cell lines, the fraction of mRNAs polyadenylated at different sites in a tandem array shifts between growing and stationary cells. These results suggest that the metabolic state of the cell is important in determining either the efficiency of polyadenylation at various sites or the stability of mRNA polyadenylated at various sites.


1994 ◽  
Vol 14 (10) ◽  
pp. 6489-6496
Author(s):  
Y Ishimi ◽  
K Matsumoto ◽  
R Ohba

We reported that DNA replication initiates from the region containing an autonomously replicating sequence from Saccharomyces cerevisiae when negatively supercoiled plasmid DNA is incubated with the proteins required for simian virus 40 DNA replication (Y. Ishimi and K. Matsumoto, Proc. Natl. Acad. Sci. USA 90:5399-5403, 1993). In this study, the DNAs containing initiation zones from mammalian cells were replicated in this model system. When negatively supercoiled DNA containing an initiation zone (2 kb) upstream of the human c-myc gene was incubated with simian virus 40 T antigen as a DNA helicase, HSSB (also called replication protein A), and DNA polymerase alpha-primase complex isolated from HeLa cells, DNA replication was specifically initiated from the center of the initiation zone, which was elongated bidirectionally in the presence of a DNA swivelase. Without HSSB, the level of DNA synthesis was significantly reduced and the localized initiation could not be detected, indicating that HSSB plays an essential role in the initiation of DNA replication. The digestion of negatively supercoiled template DNA with a single-strand-specific nuclease revealed that HSSB stimulated DNA unwinding in the center of the initiation zone where the DNA duplex is relatively unstable. In contrast, DNA replication started from a broad region of an initiation zone downstream of the dihydrofolate reductase gene from chinese hamster ovary cells, but the center of the region was mapped near the origin of bidirectional DNA replication. These results suggested that this system mimics a fundamental process of initiation of eukaryotic DNA replication. The mechanism of initiation is discussed.


1987 ◽  
Vol 7 (1) ◽  
pp. 532-534 ◽  
Author(s):  
J M Leeds ◽  
C K Mathews

dCTP pools equilibrated to equivalent specific activities in Chinese hamster ovary cells or in nuclei after incubation of cells with radiolabeled nucleosides, indicating that dCTP in nuclei does not constitute a distinct metabolic pool. In the G1 phase, [5-3H]deoxycytidine labeled dCTP to unexpectedly high specific activities. This may explain reports of replication-excluded DNA precursor pools.


1984 ◽  
Vol 4 (1) ◽  
pp. 173-180 ◽  
Author(s):  
S W Stanfield ◽  
D R Helinski

Small polydisperse circular (spc) DNA was isolated and cloned, using BglII from Chinese hamster ovary (CHO) cells. The properties of 47 clones containing at least 43 different BglII fragments are reported. The majority of the clones probably contain entire sequences from individual spcDNA molecules. Most of the clones were homologous to sequences in CHO cell chromosomal DNA, and many were also homologous to mouse LMTK- cell chromosomal sequences. The majority of homologous CHO cell chromosomal sequences were repetitive, although a few may be single copy. Only a small fraction of cloned spcDNA molecules were present in every cell; most occurred less frequently than once in 15 cells. Localization studies indicated that at least a portion of spcDNA is associated with the nucleus in CHO cells.


Sign in / Sign up

Export Citation Format

Share Document