scholarly journals cis-acting sequences required for expression of the divergently transcribed Drosophila melanogaster Sgs-7 and Sgs-8 glue protein genes.

1991 ◽  
Vol 11 (6) ◽  
pp. 2971-2979 ◽  
Author(s):  
A Hofmann ◽  
M D Garfinkel ◽  
E M Meyerowitz

The Sgs-7 and Sgs-8 glue genes at 68C are divergently transcribed and are separated by 475 bp. Fusion genes with Adh or lacZ coding sequences were constructed, and the expression of these genes, with different amounts of upstream sequences present, was tested by a transient expression procedure and by germ line transformation. A cis-acting element for both genes is located asymmetrically in the intergenic region between -211 and -43 bp relative to Sgs-7. It is required for correct expression of both genes. This element can confer the stage- and tissue-specific expression pattern of glue genes on a heterologous promoter. An 86-bp portion of the element, from -133 to -48 bp relative to Sgs-7, is shown to be capable of enhancing the expression of a truncated and therefore weakly expressed Sgs-3 fusion gene. Recently described common sequence motifs of glue gene regulatory elements (T. Todo, M. Roark, K. Vijay Raghavan, C. A. Mayeda, and E.M. Meyerowitz, Mol. Cell. Biol. 10:5991-6002, 1990) are located within this 86-bp region.

1991 ◽  
Vol 11 (6) ◽  
pp. 2971-2979
Author(s):  
A Hofmann ◽  
M D Garfinkel ◽  
E M Meyerowitz

The Sgs-7 and Sgs-8 glue genes at 68C are divergently transcribed and are separated by 475 bp. Fusion genes with Adh or lacZ coding sequences were constructed, and the expression of these genes, with different amounts of upstream sequences present, was tested by a transient expression procedure and by germ line transformation. A cis-acting element for both genes is located asymmetrically in the intergenic region between -211 and -43 bp relative to Sgs-7. It is required for correct expression of both genes. This element can confer the stage- and tissue-specific expression pattern of glue genes on a heterologous promoter. An 86-bp portion of the element, from -133 to -48 bp relative to Sgs-7, is shown to be capable of enhancing the expression of a truncated and therefore weakly expressed Sgs-3 fusion gene. Recently described common sequence motifs of glue gene regulatory elements (T. Todo, M. Roark, K. Vijay Raghavan, C. A. Mayeda, and E.M. Meyerowitz, Mol. Cell. Biol. 10:5991-6002, 1990) are located within this 86-bp region.


1989 ◽  
Vol 9 (4) ◽  
pp. 1397-1405 ◽  
Author(s):  
K E Yutzey ◽  
R L Kline ◽  
S F Konieczny

During skeletal myogenesis, approximately 20 contractile proteins and related gene products temporally accumulate as the cells fuse to form multinucleated muscle fibers. In most instances, the contractile protein genes are regulated transcriptionally, which suggests that a common molecular mechanism may coordinate the expression of this diverse and evolutionarily unrelated gene set. Recent studies have examined the muscle-specific cis-acting elements associated with numerous contractile protein genes. All of the identified regulatory elements are positioned in the 5'-flanking regions, usually within 1,500 base pairs of the transcription start site. Surprisingly, a DNA consensus sequence that is common to each contractile protein gene has not been identified. In contrast to the results of these earlier studies, we have found that the 5'-flanking region of the quail troponin I (TnI) gene is not sufficient to permit the normal myofiber transcriptional activation of the gene. Instead, the TnI gene utilizes a unique internal regulatory element that is responsible for the correct myofiber-specific expression pattern associated with the TnI gene. This is the first example in which a contractile protein gene has been shown to rely primarily on an internal regulatory element to elicit transcriptional activation during myogenesis. The diversity of regulatory elements associated with the contractile protein genes suggests that the temporal expression of the genes may involve individual cis-trans regulatory components specific for each gene.


1987 ◽  
Vol 7 (10) ◽  
pp. 3749-3758
Author(s):  
V da C Soares ◽  
R M Gubits ◽  
P Feigelson ◽  
F Costantini

To investigate the tissue-specific and hormonal regulation of the rat alpha 2u globulin gene family, we introduced one cloned member of the gene family into the mouse germ line and studied its expression in the resulting transgenic mice. Alpha 2u globulingene 207 was microinjected on a 7-kilobase DNA fragment, and four transgenic lines were analyzed. The transgene was expressed at very high levels, specifically in the liver and the preputial gland of adult male mice. The expression in male liver was first detected at puberty, and no expression was detected in female transgenic mice. This pattern of expression is similar to the expression of endogenous alpha 2u globulin genes in the rat but differs from the expression of the homologous mouse major urinary protein (MUP) gene family in that MUPs are synthesized in female liver and not in the male preputial gland. We conclude that these differences between rat alpha 2u globulin and mouse MUP gene expression are due to evolutionary differences in cis-acting regulatory elements. The expression of the alpha 2u globulin transgene in the liver was abolished by castration and fully restored after testosterone replacement. The expression could also be induced in the livers of female mice by treatment with either testosterone or dexamethasone, following ovariectomy and adrenalectomy. Therefore, the cis-acting elements responsible for regulation by these two hormones, as well as those responsible for tissue-specific expression, are closely linked to the alpha 2u globulin gene.


1989 ◽  
Vol 9 (4) ◽  
pp. 1397-1405
Author(s):  
K E Yutzey ◽  
R L Kline ◽  
S F Konieczny

During skeletal myogenesis, approximately 20 contractile proteins and related gene products temporally accumulate as the cells fuse to form multinucleated muscle fibers. In most instances, the contractile protein genes are regulated transcriptionally, which suggests that a common molecular mechanism may coordinate the expression of this diverse and evolutionarily unrelated gene set. Recent studies have examined the muscle-specific cis-acting elements associated with numerous contractile protein genes. All of the identified regulatory elements are positioned in the 5'-flanking regions, usually within 1,500 base pairs of the transcription start site. Surprisingly, a DNA consensus sequence that is common to each contractile protein gene has not been identified. In contrast to the results of these earlier studies, we have found that the 5'-flanking region of the quail troponin I (TnI) gene is not sufficient to permit the normal myofiber transcriptional activation of the gene. Instead, the TnI gene utilizes a unique internal regulatory element that is responsible for the correct myofiber-specific expression pattern associated with the TnI gene. This is the first example in which a contractile protein gene has been shown to rely primarily on an internal regulatory element to elicit transcriptional activation during myogenesis. The diversity of regulatory elements associated with the contractile protein genes suggests that the temporal expression of the genes may involve individual cis-trans regulatory components specific for each gene.


1987 ◽  
Vol 7 (10) ◽  
pp. 3749-3758 ◽  
Author(s):  
V da C Soares ◽  
R M Gubits ◽  
P Feigelson ◽  
F Costantini

To investigate the tissue-specific and hormonal regulation of the rat alpha 2u globulin gene family, we introduced one cloned member of the gene family into the mouse germ line and studied its expression in the resulting transgenic mice. Alpha 2u globulingene 207 was microinjected on a 7-kilobase DNA fragment, and four transgenic lines were analyzed. The transgene was expressed at very high levels, specifically in the liver and the preputial gland of adult male mice. The expression in male liver was first detected at puberty, and no expression was detected in female transgenic mice. This pattern of expression is similar to the expression of endogenous alpha 2u globulin genes in the rat but differs from the expression of the homologous mouse major urinary protein (MUP) gene family in that MUPs are synthesized in female liver and not in the male preputial gland. We conclude that these differences between rat alpha 2u globulin and mouse MUP gene expression are due to evolutionary differences in cis-acting regulatory elements. The expression of the alpha 2u globulin transgene in the liver was abolished by castration and fully restored after testosterone replacement. The expression could also be induced in the livers of female mice by treatment with either testosterone or dexamethasone, following ovariectomy and adrenalectomy. Therefore, the cis-acting elements responsible for regulation by these two hormones, as well as those responsible for tissue-specific expression, are closely linked to the alpha 2u globulin gene.


1990 ◽  
Vol 10 (1) ◽  
pp. 131-137
Author(s):  
R L Glaser ◽  
J T Lis

The hsp26 gene of Drosophila melanogaster is expressed in six tissues during development and in a tissue-general response to heat shock. To be able to compare tissue-specific and heat-induced mechanisms of hsp26 expression, we have begun an analysis of the sequences involved in the spermatocyte-specific expression of the hsp26 gene by using germ line transformation. hsp26 mRNA synthesized in the spermatocytes has the same start site as sites previously demonstrated for nurse cell-specific and heat-induced mRNAs. Three regions of the hsp26 gene (nucleotides -351 to -135, -135 to -85, and +11 to +632) were able to stimulate spermatocyte-specific expression when fused with promoter sequences (nucleotides -85 to +11) that alone were insufficient to stimulate expression. These stimulatory regions appear to contain elements that provide redundant functions. While each region was able to stimulate expression independently, the deletion of any one region from a construct was without consequence as long as another compensatory region(s) was still present. There must reside, at a minimum, two independent spermatocyte-specifying elements within the sequences that encompass the three stimulatory regions and the promoter. At least one element is contained within sequences from -351 to -48. This region, in either orientation, can stimulate spermatocyte-specific expression from a heterologous promoter. A second element must reside in sequences from -52 to +632, since these sequences are also sufficient to direct spermatocyte-specific expression.


1990 ◽  
Vol 10 (1) ◽  
pp. 131-137 ◽  
Author(s):  
R L Glaser ◽  
J T Lis

The hsp26 gene of Drosophila melanogaster is expressed in six tissues during development and in a tissue-general response to heat shock. To be able to compare tissue-specific and heat-induced mechanisms of hsp26 expression, we have begun an analysis of the sequences involved in the spermatocyte-specific expression of the hsp26 gene by using germ line transformation. hsp26 mRNA synthesized in the spermatocytes has the same start site as sites previously demonstrated for nurse cell-specific and heat-induced mRNAs. Three regions of the hsp26 gene (nucleotides -351 to -135, -135 to -85, and +11 to +632) were able to stimulate spermatocyte-specific expression when fused with promoter sequences (nucleotides -85 to +11) that alone were insufficient to stimulate expression. These stimulatory regions appear to contain elements that provide redundant functions. While each region was able to stimulate expression independently, the deletion of any one region from a construct was without consequence as long as another compensatory region(s) was still present. There must reside, at a minimum, two independent spermatocyte-specifying elements within the sequences that encompass the three stimulatory regions and the promoter. At least one element is contained within sequences from -351 to -48. This region, in either orientation, can stimulate spermatocyte-specific expression from a heterologous promoter. A second element must reside in sequences from -52 to +632, since these sequences are also sufficient to direct spermatocyte-specific expression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ami Shah ◽  
Madison Ratkowski ◽  
Alessandro Rosa ◽  
Paul Feinstein ◽  
Thomas Bozza

AbstractOlfactory sensory neurons express a large family of odorant receptors (ORs) and a small family of trace amine-associated receptors (TAARs). While both families are subject to so-called singular expression (expression of one allele of one gene), the mechanisms underlying TAAR gene choice remain obscure. Here, we report the identification of two conserved sequence elements in the mouse TAAR cluster (T-elements) that are required for TAAR gene expression. We observed that cell-type-specific expression of a TAAR-derived transgene required either T-element. Moreover, deleting either element reduced or abolished expression of a subset of TAAR genes, while deleting both elements abolished olfactory expression of all TAARs in cis with the mutation. The T-elements exhibit several features of known OR enhancers but also contain highly conserved, unique sequence motifs. Our data demonstrate that TAAR gene expression requires two cooperative cis-acting enhancers and suggest that ORs and TAARs share similar mechanisms of singular expression.


1992 ◽  
Vol 286 (1) ◽  
pp. 179-185 ◽  
Author(s):  
C P Simkevich ◽  
J P Thompson ◽  
H Poppleton ◽  
R Raghow

The transcriptional activity of plasmid pCOL-KT, in which human pro alpha 1 (I) collagen gene upstream sequences up to -804 and most of the first intron (+474 to +1440) drive expression of the chloramphenicol acetyltransferase (CAT) gene [Thompson, Simkevich, Holness, Kang & Raghow (1991) J. Biol. Chem. 266, 2549-2556], was tested in a number of mesenchymal and non-mesenchymal cells. We observed that pCOL-KT was readily expressed in fibroblasts of human (IMR-90 and HFL-1), murine (NIH 3T3) and avian (SL-29) origin and in a human rhabdomyosarcoma cell line (A204), but failed to be expressed in human erythroleukaemia (K562) and rat pheochromocytoma (PC12) cells, indicating that the regulatory elements required for appropriate tissue-specific expression of the human pro alpha 1 (I) collagen gene were present in pCOL-KT. To delineate the nature of cis-acting sequences which determine the tissue specificity of pro alpha 1 (I) collagen gene expression, functional consequences of deletions in the promoter and first intron of pCOL-KT were tested in various cell types by transient expression assays. Cis elements in the promoter-proximal and intronic sequences displayed either a positive or a negative influence depending on the cell type. Thus deletion of fragments using EcoRV (nt -625 to -442 deleted), XbaI (-804 to -331) or SstII (+670 to +1440) resulted in 2-10-fold decreased expression in A204 and HFL-1 cells. The negative influences of deletions in the promoter-proximal sequences was apparently considerably relieved by deleting sequences in the first intron, and the constructs containing the EcoRV/SstII or XbaI/SstII double deletions were expressed to a much greater extent than either of the single deletion constructs. In contrast, the XbaI* deletion (nt -804 to -609), either alone or in combination with the intronic deletion, resulted in very high expression in all cells regardless of their collagen phenotype; the XbaI*/(-SstII) construct, which contained the intronic SstII fragment (+670 to +1440) in the reverse orientation, was not expressed in either mesenchymal or nonmesenchymal cells. Based on these results, we conclude that orientation-dependent interactions between negatively acting 5′-upstream sequences and the first intron determine the mesenchymal cell specificity of human pro alpha 1 (I) collagen gene transcription.


1991 ◽  
Vol 11 (5) ◽  
pp. 2913-2917
Author(s):  
F Maschat ◽  
M L Dubertret ◽  
J A Lepesant

The transcription of the P1 gene is induced by 20-hydroxyecdysone in fat bodies of third-instar larvae. Germ line transformation showed that sequences between -138 to +276 contain elements required for a qualitatively correct developmental and hormonal regulation of P1 transcription. Sequences from -138 to -68 are essential for this expression.


Sign in / Sign up

Export Citation Format

Share Document