tissue specificity
Recently Published Documents


TOTAL DOCUMENTS

941
(FIVE YEARS 165)

H-INDEX

73
(FIVE YEARS 9)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Xin Hua ◽  
Wei Song ◽  
Kangzong Wang ◽  
Xue Yin ◽  
Changqi Hao ◽  
...  

AbstractThe genes in polyphyllins pathway mixed with other steroid biosynthetic genes form an extremely complex biosynthetic network in Paris polyphylla with a giant genome. The lack of genomic data and tissue specificity causes the study of the biosynthetic pathway notably difficult. Here, we report an effective method for the prediction of key genes of polyphyllin biosynthesis. Full-length transcriptome from eight different organs via hybrid sequencing of next generation sequencingand third generation sequencing platforms annotated two 2,3-oxidosqualene cyclases (OSCs), 216 cytochrome P450s (CYPs), and 199 UDP glycosyltransferases (UGTs). Combining metabolic differences, gene-weighted co-expression network analysis, and phylogenetic trees, the candidate ranges of OSC, CYP, and UGT genes were further narrowed down to 2, 15, and 24, respectively. Beside the three previously characterized CYPs, we identified the OSC involved in the synthesis of cycloartenol and the UGT (PpUGT73CR1) at the C-3 position of diosgenin and pennogenin in P. polyphylla. This study provides an idea for the investigation of gene cluster deficiency biosynthesis pathways in medicinal plants.


Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Mai Mohsen Ahmed Abdelghany ◽  
Maria Kurikawa ◽  
Megumi Watanabe ◽  
Hidenori Matsui ◽  
Mikihiro Yamamoto ◽  
...  

Rhizoctonia solani is a necrotrophic plant pathogen with a wide host range. R. solani is a species complex consisting of thirteen anastomosis groups (AGs) defined by compatibility of hyphal fusion reaction and subgroups based on cultural morphology. The relationship between such classifications and host specificity remains elusive. Here, we investigated the pathogenicity of seventeen R. solani isolates (AG-1 to 7) in Japan towards Arabidopsis thaliana using leaf and soil inoculations. The tested AGs, except AG-3 and AG-6, induced symptoms in both methods with variations in pathogenicity. The virulence levels differed even within the same AG and subgroup. Some isolates showed tissue-specific infection behavior. Thus, the AGs and their subgroups are suggested to be not enough to define the virulence (host and tissue specificity) of R. solani. We also evaluated the virulence of the isolates on Arabidopsis plants pretreated with salicylic acid, jasmonic acid, and ethylene. No obvious effects were detected on the symptom formation by the virulence isolates, but ethylene and salicylic acid slightly enhanced the susceptibility to the weak and nonvirulent isolates. R. solani seems to be able to overcome the induced defense by these phytohormones in the infection to Arabidopsis.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1909
Author(s):  
Jennifer D. Kaminker ◽  
Alexander V. Timoshenko

Galectins comprise a family of soluble β-galactoside-binding proteins, which regulate a variety of key biological processes including cell growth, differentiation, survival, and death. This paper aims to address the current knowledge on the unique properties, regulation, and expression of the galectin-16 gene (LGALS16) in human cells and tissues. To date, there are limited studies on this galectin, with most focusing on its tissue specificity to the placenta. Here, we report the expression and 8-Br-cAMP-induced upregulation of LGALS16 in two placental cell lines (BeWo and JEG-3) in the context of trophoblastic differentiation. In addition, we provide the results of a bioinformatics search for LGALS16 using datasets available at GEO, Human Protein Atlas, and prediction tools for relevant transcription factors and miRNAs. Our findings indicate that LGALS16 is detected by microarrays in diverse human cells/tissues and alters expression in association with cancer, diabetes, and brain diseases. Molecular mechanisms of the transcriptional and post-transcriptional regulation of LGALS16 are also discussed based on the available bioinformatics resources.


2021 ◽  
Vol 7 (4) ◽  
pp. 79
Author(s):  
Joshua Hazan ◽  
Assaf Chanan Bester

Over the last decade, tens of thousands of new long non-coding RNAs (lncRNAs) have been identified in the human genome. Nevertheless, except for a handful of genes, the genetic characteristics and functions of most of these lncRNAs remain elusive; this is partially due to their relatively low expression, high tissue specificity, and low conservation across species. A major limitation for determining the function of lncRNAs was the lack of methodologies suitable for studying these genes. The recent development of CRISPR/Cas9 technology has opened unprecedented opportunities to uncover the genetic and functional characteristics of the non-coding genome via targeted and high-throughput approaches. Specific CRISPR/Cas9-based approaches were developed to target lncRNA loci. Some of these approaches involve modifying the sequence, but others were developed to study lncRNAs by inducing transcriptional and epigenetic changes. The discovery of other programable Cas proteins broaden our possibilities to target RNA molecules with greater precision and accuracy. These approaches allow for the knock-down and characterization of lncRNAs. Here, we review how various CRISPR-based strategies have been used to characterize lncRNAs with important functions in different biological contexts and how these approaches can be further utilized to improve our understanding of the non-coding genome.


2021 ◽  
Vol 12 ◽  
Author(s):  
Natalia Borowska-Zuchowska ◽  
Ewa Robaszkiewicz ◽  
Serhii Mykhailyk ◽  
Joanna Wartini ◽  
Artur Pinski ◽  
...  

Nucleolar dominance (ND) is an epigenetic, developmentally regulated phenomenon that describes the selective inactivation of 35S rDNA loci derived from one progenitor of a hybrid or allopolyploid. The presence of ND was documented in an allotetraploid grass, Brachypodium hybridum (genome composition DDSS), which is a polyphyletic species that arose from crosses between two putative ancestors that resembled the modern B. distachyon (DD) and B. stacei (SS). In this work, we investigated the developmental stability of ND in B. hybridum genotype 3-7-2 and compared it with the reference genotype ABR113. We addressed the question of whether the ND is established in generative tissues such as pollen mother cells (PMC). We examined condensation of rDNA chromatin by fluorescence in situ hybridization employing state-of-art confocal microscopy. The transcription of rDNA homeologs was determined by reverse-transcription cleaved amplified polymorphic sequence analysis. In ABR113, the ND was stable in all tissues analyzed (primary and adventitious root, leaf, and spikes). In contrast, the 3-7-2 individuals showed a strong upregulation of the S-genome units in adventitious roots but not in other tissues. Microscopic analysis of the 3-7-2 PMCs revealed extensive decondensation of the D-genome loci and their association with the nucleolus in meiosis. As opposed, the S-genome loci were always highly condensed and localized outside the nucleolus. These results indicate that genotype-specific loss of ND in B. hybridum occurs probably after fertilization during developmental processes. This finding supports our view that B. hybridum is an attractive model to study ND in grasses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanling Peng ◽  
Huifang Kang ◽  
Jing Luo ◽  
Yubo Zhang

Super-enhancers (SEs) and broad H3K4me3 domains (BDs) are crucial regulators in the control of tissue identity in human and mouse. However, their features in pig remain largely unknown. In this study, by integrative computational analyses of epigenomic and transcriptomic data, we have characterized SEs and BDs in six pig tissues and analyzed their conservation in comparison with human and mouse tissues. Similar to human and mouse, pig SEs and BDs display higher tissue specificity than their typical counterparts. Genes proximal to SEs and BDs are associated with tissue identity in most tissues. About 55–182 SEs (5–17% in total) and 99–309 BDs (8–16% in total) across pig tissues are considered as functionally conserved elements because they have orthologous SEs and BDs in human and mouse. However, these elements do not necessarily exhibit sequence conservation. The functionally conserved SEs are correlated to tissue identity in majority of pig tissues, while those conserved BDs are linked to tissue identity in a few tissues. Our study provides resources for future gene regulatory studies in pig. It highlights that SEs are more effective in defining tissue identity than BDs, which is contrasting to a previous study. It also provides novel insights on understanding the sequence features of functionally conserved elements.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zihan Cheng ◽  
Xuemei Zhang ◽  
Wenjing Yao ◽  
Yuan Gao ◽  
Kai Zhao ◽  
...  

Abstract Background Xyloglucan endotransglucosylase/hydrolase (XTH) family plays an important role in cell wall reconstruction and stress resistance in plants. However, the detailed characteristics of XTH family genes and their expression pattern under salt stress have not been reported in poplar. Results In this study, a total of 43 PtrXTH genes were identified from Populus simonii × Populus nigra, and most of them contain two conserved structures (Glyco_hydro_16 and XET_C domain). The promoters of the PtrXTH genes contain mutiple cis-acting elements related to growth and development and stress responses. Collinearity analysis revealed that the XTH genes from poplar has an evolutionary relationship with other six species, including Eucalyptus robusta, Solanum lycopersicum, Glycine max, Arabidopsis, Zea mays and Oryza sativa. Based on RNA-Seq analysis, the PtrXTH genes have different expression patterns in the roots, stems and leaves, and many of them are highly expressed in the roots. In addition, there are11 differentially expressed PtrXTH genes in the roots, 9 in the stems, and 7 in the leaves under salt stress. In addition, the accuracy of RNA-Seq results was verified by RT-qPCR. Conclusion All the results indicated that XTH family genes may play an important role in tissue specificity and salt stress response. This study will lay a theoretical foundation for further study on molecular function of XTH genes in poplar.


2021 ◽  
Vol 8 ◽  
Author(s):  
Elnaz Aledavood ◽  
Aria Gheeraert ◽  
Alessia Forte ◽  
Laurent Vuillon ◽  
Ivan Rivalta ◽  
...  

Adenosine monophosphate-activated protein kinase (AMPK) is a key energy sensor regulating the cell metabolism in response to energy supply and demand. The evolutionary adaptation of AMPK to different tissues is accomplished through the expression of distinct isoforms that can form up to 12 heterotrimeric complexes, which exhibit notable differences in the sensitivity to direct activators. To comprehend the molecular factors of the activation mechanism of AMPK, we have assessed the changes in the structural and dynamical properties of β1- and β2-containing AMPK complexes formed upon binding to the pan-activator PF-739. The analysis revealed the molecular basis of the PF-739-mediated activation of AMPK and enabled us to identify distinctive features that may justify the slightly higher affinity towards the β1−isoform, such as the β1−Asn111 to β2−Asp111 substitution, which seems to be critical for modulating the dynamical sensitivity of β1- and β2 isoforms. The results are valuable in the design of selective activators to improve the tissue specificity of therapeutic treatment.


Sign in / Sign up

Export Citation Format

Share Document