scholarly journals Transcription of muscle-specific genes is repressed by reactivation of pp60v-src in postmitotic quail myotubes.

1991 ◽  
Vol 11 (6) ◽  
pp. 3331-3338 ◽  
Author(s):  
G Falcone ◽  
S Alemà ◽  
F Tatò

Quail myogenic cells infected with temperature sensitive (ts) mutants of Rous sarcoma virus (RSV) exhibit a temperature-dependent transformation and block of differentiation. When the cells are allowed to differentiate at the restrictive temperature (41 degrees C) and then shifted back to the permissive temperature (35 degrees C), a sharp reduction in the accumulation of muscle-specific mRNAs is observed, following reactivation of the transforming protein pp60v-src. A kinetic analysis of this down-regulation reveals that the reduction in the accumulation of muscle-specific transcripts occurs fairly rapidly within 6 to 20 h after the shift back, depending on the mRNA analyzed. Studies on transcription of endogenous muscle-specific genes and a transfected chloramphenicol acetyltransferase reporter gene under the control of muscle-specific promoters, at the different temperatures, suggest that the oncogene exerts its control mainly at the transcriptional level. On the contrary, transcription of the CMD1 gene, the avian homolog of the mouse muscle regulatory MyoD gene, is not significantly affected by the oncogene both in proliferating myoblasts and in myotubes shifted back to 35 degrees C. These findings are consistent with the conclusion that v-src blocks myogenesis by controlling transcription of muscle-specific genes independently of cell proliferation. Furthermore, they suggest the existence of an alternative pathway, not requiring the silencing of CMD1 transcription, through which the oncogene exerts its effect.

1991 ◽  
Vol 11 (6) ◽  
pp. 3331-3338
Author(s):  
G Falcone ◽  
S Alemà ◽  
F Tatò

Quail myogenic cells infected with temperature sensitive (ts) mutants of Rous sarcoma virus (RSV) exhibit a temperature-dependent transformation and block of differentiation. When the cells are allowed to differentiate at the restrictive temperature (41 degrees C) and then shifted back to the permissive temperature (35 degrees C), a sharp reduction in the accumulation of muscle-specific mRNAs is observed, following reactivation of the transforming protein pp60v-src. A kinetic analysis of this down-regulation reveals that the reduction in the accumulation of muscle-specific transcripts occurs fairly rapidly within 6 to 20 h after the shift back, depending on the mRNA analyzed. Studies on transcription of endogenous muscle-specific genes and a transfected chloramphenicol acetyltransferase reporter gene under the control of muscle-specific promoters, at the different temperatures, suggest that the oncogene exerts its control mainly at the transcriptional level. On the contrary, transcription of the CMD1 gene, the avian homolog of the mouse muscle regulatory MyoD gene, is not significantly affected by the oncogene both in proliferating myoblasts and in myotubes shifted back to 35 degrees C. These findings are consistent with the conclusion that v-src blocks myogenesis by controlling transcription of muscle-specific genes independently of cell proliferation. Furthermore, they suggest the existence of an alternative pathway, not requiring the silencing of CMD1 transcription, through which the oncogene exerts its effect.


1980 ◽  
Vol 43 (1) ◽  
pp. 407-417
Author(s):  
A. Tanaka ◽  
A. Kaji

Aggregation capacity of chicken embryo chondrocytes decreases when transformed by Rous sarcoma viruses. Cell-to-cell aggregation capacity of chondrocytes infected with a T class temperature-sensitive mutant (tsNY68) (with the temperature-sensitive lesion at the src gene) of Rous sarcoma virus is dependent upon the temperature at which these cells are grown. When grown at the permissive temperature (36 degrees C), where the transforming gene is expressed, aggregation capacity was lower than normal while infected cells grown at the non-permissive temperature (41.5 degrees C) had similar capacity to aggregate to that of normal chondrocytes. However, after a prolonged period of culture (10 days), chondrocytes transformed by wild type SR-RSV regained the normal level of aggregation capacity. Cells transformed by tsNY68 and incubated at the permissive temperature for 10 days also regained the normal level of aggregation capacity. It appears therefore that RSV-transformed chondrocytes first become less adhesive but during long-term cultivation they regain their property to aggregate. The decrease of aggregation capacity due to T class mutants of RSV at 36 degrees C is dependent on constant maintenance of protein synthesis because addition of cycloheximide restored the aggregation capacity even at the permissive temperature.


1988 ◽  
Vol 253 (2) ◽  
pp. 381-386 ◽  
Author(s):  
T Schreier ◽  
R R Friis ◽  
K H Winterhalter ◽  
B Trüeb

We have analysed the effects of oncogenic transformation on the expression of type VI collagen in mesenchymal cells. Synthesis of type VI collagen was almost completely inhibited in fibroblasts transformed by DNA or RNA tumour viruses or in cells derived from spontaneous mesenchymal tumours. Inhibition of type VI collagen synthesis appears, therefore, to be a common phenomenon of transformed mesenchymal cells. When introduced into normal cells by viral vectors, the ‘nuclear’ oncogene v-myc had an inhibitory effect similar to that of the ‘cytoplasmic’ oncogene v-src. Fibroblasts infected with a temperature-sensitive strain of Rous sarcoma virus (NY68) produced type VI collagen at the restrictive, but not at the permissive temperature. If such cells were shifted from the permissive to the restrictive temperature, synthesis of the individual subunits of type VI collagen was co-ordinately induced. These results demonstrate that the activity of a single oncogene product is sufficient to inhibit type VI collagen expression.


1986 ◽  
Vol 236 (2) ◽  
pp. 595-599 ◽  
Author(s):  
L Bosca ◽  
M Mojena ◽  
J Ghysdael ◽  
G G Rousseau ◽  
L Hue

The concentration of fructose 2,6-bisphosphate and the activity of 6-phosphofructo-2-kinase are increased after infection of chick-embryo fibroblasts with the Rous sarcoma virus, or with a temperature-sensitive mutant of this virus at the permissive, but not at the non-permissive, temperature. This is observed after transformation by retroviruses carrying either the v-src or v-fps, but not the v-mil and/or v-myc, oncogenes. Comparison of the effects of the Rous sarcoma virus with those of phorbol myristate acetate on fructose 2,6-bisphosphate suggests that both result from the stimulation of a step which is rate-limiting for 6-phosphofructo-2-kinase activation and which is also controlled by protein kinase C.


1983 ◽  
Vol 3 (1) ◽  
pp. 113-125
Author(s):  
A S Menko ◽  
Y Toyama ◽  
D Boettiger ◽  
H Holtzer

Trypsinized chicken embryo dermal fibroblasts plated in the presence of cytochalasin B (CB) quickly attached to the substrate and within 24 h obtained an arborized morphology. This morphology is the result of the pushing out of pseudopodial processes along the substrate from the round central cell body. There were no microfilament bundles in the processes of these cells plated in the presence of CB; however, the processes were packed with highly oriented, parallel-aligned intermediate filaments. Only a few scattered microtubules were seen in these processes. These results demonstrated that in CB, cells are capable of a form of movement, i.e., the extension of pseudopodial processes, without the presence of the microfilament structures usually associated with extensions of the cytoplasm and pseudopodial movements. We also found that arborization did not depend on fibronectin since cells plated in CB did not have fibronectin fibers associated with the processes. Chicken fibroblasts transformed with tsLA24A, a Rous sarcoma virus which is temperature sensitive for pp60src, formed arborized cells with properties similar to those of uninfected fibroblasts when plated in the presence of CB at the nonpermissive temperature (41 degrees C). At the permissive temperature for transformation (36 degrees C), the cells attached to the substrate but remained round. These round cells were not only deficient in microfilament bundles but also lacked the highly organized intermediate filaments found in the processes of the arborized cells at 41 degrees C. Although both microfilament bundles and the fibronectin matrix were decreased after transformation with Rous sarcoma virus, neither was involved in the formation of processes in normal cells plated in CB. Therefore, the inability of the transformed cells to form or maintain processes in CB must be the result of another structural alteration in the transformed cells, such as that of the intermediate filaments.


1987 ◽  
Vol 7 (1) ◽  
pp. 371-378
Author(s):  
J E DeClue ◽  
G S Martin

The cytoskeletal protein talin was found to undergo enhanced phosphorylation at tyrosine residues in chicken embryo fibroblasts following transformation by Rous sarcoma virus. An increase in the tyrosine phosphorylation of talin was also observed within 6 h in cells infected by the temperature-sensitive mutant tsNY68 after a shift from the nonpermissive to the permissive temperature. The overall extent of phosphorylation was 0.07 mol of phosphate per mol of talin and was not appreciably altered by transformation. In uninfected cells talin was shown to be phosphorylated at multiple sites by tryptic peptide mapping. Following transformation most of these sites remained phosphorylated, to the same or to a lesser extent, while novel, phosphotyrosine-containing phosphopeptides appeared. Talin was phosphorylated at tyrosine in cells infected by Rous sarcoma virus mutants which induce altered or partial transformation morphologies; thus the increased phosphorylation of talin at tyrosine occurred irrespective of the morphology induced. Transformation by Y73 also induced elevated levels of phosphotyrosine in talin, whereas transformation by the avian erythroblastosis and Fujinami sarcoma viruses did not.


1983 ◽  
Vol 3 (8) ◽  
pp. 1518-1526 ◽  
Author(s):  
D Boettiger ◽  
R Soltesz ◽  
H Holtzer ◽  
M Pacifici

Stage 21 to 22 chicken embryo limb bud cells were infected with a temperature-sensitive mutant of Rous sarcoma virus and were grown in culture. Although control, uninfected cells yielded definitive chondroblasts (by day 4) which initiated the synthesis of the cartilage-characteristic proteoglycan, the transformed cells grown at the permissive temperature failed to do so. These effects were fully reversible after a shift to the nonpermissive temperature. In addition, infected cells at the nonpermissive temperature expressed traits of terminal chondrogenic maturation 2 to 3 days earlier than parallel, uninfected cells. Thus, Rous sarcoma virus-induced transformation reversibly blocks terminal limb bud cell chondrogenesis in culture, at the nonpermissive temperature, viral infection may also induce intracellular or extracellular conditions which favor or accelerate the process of chondrogenic cell maturation.


The first RNA tumour virus to be isolated and identified as such was the Rous sarcoma virus (RSV), which causes the transformation of cells in culture as well as fibrosarcomas when injected into suitable host animals (for reviews see Hanafusa (1977) and Bishop (1978)). The genome of RSV has been studied intensively for the past 10-12 years, and it has been shown that the virus itself carries a gene responsible for malignant transformation. This gene, denoted src for sarcoma, was identified genetically through the isolation of temperature-sensitive mutants that were conditional for cell transformation in culture. These mutants are able to transform cells at a temperature of 35 °C, the permissive temperature, but are unable to transform cells morphologically at 41 °C, the non-permissive temperature. The existence of such temperature sensitive mutants implied that the product of the viral transforming gene, in RSV, was a protein (Kawai & Hanafusa 1971). In addition to temperature-sensitive mutants, non-conditional mutants were isolated that had deletions of the src gene. These mutants are unable to transform cells in culture or to cause fibrosarcomas under most conditions. About 4 years ago, the product of the src gene was identified as a phosphoprotein ( M t = 60000); this protein was denoted pp60 src (Purchio et al. 1978). The RSV genome and the expression of the src gene is illustrated in figure 1.


1983 ◽  
Vol 3 (1) ◽  
pp. 113-125 ◽  
Author(s):  
A S Menko ◽  
Y Toyama ◽  
D Boettiger ◽  
H Holtzer

Trypsinized chicken embryo dermal fibroblasts plated in the presence of cytochalasin B (CB) quickly attached to the substrate and within 24 h obtained an arborized morphology. This morphology is the result of the pushing out of pseudopodial processes along the substrate from the round central cell body. There were no microfilament bundles in the processes of these cells plated in the presence of CB; however, the processes were packed with highly oriented, parallel-aligned intermediate filaments. Only a few scattered microtubules were seen in these processes. These results demonstrated that in CB, cells are capable of a form of movement, i.e., the extension of pseudopodial processes, without the presence of the microfilament structures usually associated with extensions of the cytoplasm and pseudopodial movements. We also found that arborization did not depend on fibronectin since cells plated in CB did not have fibronectin fibers associated with the processes. Chicken fibroblasts transformed with tsLA24A, a Rous sarcoma virus which is temperature sensitive for pp60src, formed arborized cells with properties similar to those of uninfected fibroblasts when plated in the presence of CB at the nonpermissive temperature (41 degrees C). At the permissive temperature for transformation (36 degrees C), the cells attached to the substrate but remained round. These round cells were not only deficient in microfilament bundles but also lacked the highly organized intermediate filaments found in the processes of the arborized cells at 41 degrees C. Although both microfilament bundles and the fibronectin matrix were decreased after transformation with Rous sarcoma virus, neither was involved in the formation of processes in normal cells plated in CB. Therefore, the inability of the transformed cells to form or maintain processes in CB must be the result of another structural alteration in the transformed cells, such as that of the intermediate filaments.


1983 ◽  
Vol 3 (8) ◽  
pp. 1518-1526
Author(s):  
D Boettiger ◽  
R Soltesz ◽  
H Holtzer ◽  
M Pacifici

Stage 21 to 22 chicken embryo limb bud cells were infected with a temperature-sensitive mutant of Rous sarcoma virus and were grown in culture. Although control, uninfected cells yielded definitive chondroblasts (by day 4) which initiated the synthesis of the cartilage-characteristic proteoglycan, the transformed cells grown at the permissive temperature failed to do so. These effects were fully reversible after a shift to the nonpermissive temperature. In addition, infected cells at the nonpermissive temperature expressed traits of terminal chondrogenic maturation 2 to 3 days earlier than parallel, uninfected cells. Thus, Rous sarcoma virus-induced transformation reversibly blocks terminal limb bud cell chondrogenesis in culture, at the nonpermissive temperature, viral infection may also induce intracellular or extracellular conditions which favor or accelerate the process of chondrogenic cell maturation.


Sign in / Sign up

Export Citation Format

Share Document