scholarly journals Depletion of c-myc with specific antisense sequences reverses the transformed phenotype in ras oncogene-transformed NIH 3T3 cells.

1991 ◽  
Vol 11 (7) ◽  
pp. 3699-3710 ◽  
Author(s):  
M D Sklar ◽  
E Thompson ◽  
M J Welsh ◽  
M Liebert ◽  
J Harney ◽  
...  

ras oncogene-transformed NIH 3T3 cells expressing glucocorticoid-inducible antisense c-myc cDNA transcripts at levels sufficient to deplete c-myc protein lost their transformed morphology and the ability to grow in soft agar; their ability to form tumors in nude mice was also impaired. These changes were dependent on the continuous expression of the antisense sequences. No major effects on plating efficiencies, growth rates in monolayer culture, or immortalization were observed in the revertant cells, indicating that the observed effects were not a toxic consequence of c-myc protein depletion. Transfection with the same vector expressing c-myc in the sense orientation or other control vectors had no effect on transformation. These results suggest that a certain minimum level of expression of c-myc is required for the maintenance of ras transformation in NIH 3T3 cells.

1991 ◽  
Vol 11 (7) ◽  
pp. 3699-3710
Author(s):  
M D Sklar ◽  
E Thompson ◽  
M J Welsh ◽  
M Liebert ◽  
J Harney ◽  
...  

ras oncogene-transformed NIH 3T3 cells expressing glucocorticoid-inducible antisense c-myc cDNA transcripts at levels sufficient to deplete c-myc protein lost their transformed morphology and the ability to grow in soft agar; their ability to form tumors in nude mice was also impaired. These changes were dependent on the continuous expression of the antisense sequences. No major effects on plating efficiencies, growth rates in monolayer culture, or immortalization were observed in the revertant cells, indicating that the observed effects were not a toxic consequence of c-myc protein depletion. Transfection with the same vector expressing c-myc in the sense orientation or other control vectors had no effect on transformation. These results suggest that a certain minimum level of expression of c-myc is required for the maintenance of ras transformation in NIH 3T3 cells.


1997 ◽  
Vol 8 (5) ◽  
pp. 897-908 ◽  
Author(s):  
R A Janssen ◽  
J W Mier

The levels of high molecular weight isoforms of tropomyosin (TM) are markedly reduced in ras-transformed cells. Previous studies have demonstrated that the forced expression of tropomyosin-1 (TM-1) induces reversion of the transformed phenotype of ras-transformed fibroblasts. The effects of the related isoform TM-2 on transformation are less clear. To assess the effects of forced expression of the TM-2 protein on ras-induced tumorigenicity, we introduced a TM-2 cDNA lacking the 3' untranslated region riboregulator into ras-transformed NIH 3T3 fibroblasts. TM-2 expression resulted in a flatter cell morphology and restoration of stress fibers. TM-2 expression also significantly reduced growth rates in low serum, soft agar, and nude mice. The reduced growth rates were associated with a prolongation of G0-G1. To identify the mechanism of TM-2-induced growth inhibition, we analyzed the effects of TM-2 reexpression of ERK and c-jun N-terminal kinase (JNK) activities. Levels of ERK phosphorylation and activity in TM-2-transfected tumor cells were comparable to those in mock-transfected tumor cells. JNK activity was only modestly increased in ras-transformed cells relative to untransformed NIH 3T3 cells and only slightly reduced as result of forced TM-2 expression. We conclude that the partially restored expression of the TM-2 protein induces growth inhibition of ras-transformed NIH 3T3 cells without influencing ERK or JNK activities. Furthermore, the 3' untranslated region riboregulator of the alpha-tropomyosin gene is not needed for the inhibition of ras-induced growth.


1994 ◽  
Vol 139 (1) ◽  
pp. 71-81 ◽  
Author(s):  
R. J. de Antueno ◽  
R. C. Cantrill ◽  
Y-S. Huang ◽  
G. W. Ells ◽  
M. Elliot ◽  
...  

1991 ◽  
Vol 11 (2) ◽  
pp. 1138-1145
Author(s):  
D Talarico ◽  
C Basilico

The K-fgf/hst oncogene encodes a secreted growth factor of the fibroblast growth factor (FGF) family. The ability of K-fgf-transformed cells to grow in soft agar and in serum-free medium is inhibited by anti-K-FGF neutralizing antibodies, consistent with an autocrine mechanism of transformation. The transformed properties of clones that express high levels of K-FGF are, however, only partially affected. To better define the autocrine mechanism of transformation by K-fgf and to determine whether receptor activation could occur intracellularly, we constructed two mutants of the K-fgf cDNA. Deletion of the sequences encoding the signal peptide suppressed K-fgf ability to induce foci in NIH 3T3 cells. A few morphologically transformed colonies were observed in cotransfection experiments, and they were found to express high levels of cytoplasmic K-FGF. However, their ability to grow in serum-free medium and in soft agar was inhibited by anti-K-FGF antibodies. Addition of a sequence encoding the KDEL endoplasmic reticulum and Golgi retention signal to the K-fgf cDNA led to accumulation of the growth factor in intracellular compartments. The ability of the KDEL mutant to induce foci in NIH 3T3 cells was much lower than that of the wild-type cDNA, and also in this case the transformed phenotype was reverted by anti-K-FGF antibodies. These and other findings indicate that the transformed phenotype of cells expressing a nonsecretory K-FGF is due to the extracellular activation of the receptor by the small amounts of growth factor that these cells still release. Thus, transformation by K-fgf appears to be due to an autocrine growth mechanisms that requires activation of the mitogenic pathway at the cell surface.


1993 ◽  
Vol 13 (3) ◽  
pp. 1824-1835 ◽  
Author(s):  
A Aoyama ◽  
E Fröhli ◽  
R Schäfer ◽  
R Klemenz

alpha B-crystallin, a major soluble protein of vertebrate eye lenses, is a small heat shock protein which transiently accumulates in response to heat shock and other kinds of stress in mouse NIH 3T3 fibroblasts. Ectopic expression of an alpha B-crystallin cDNA clone renders NIH 3T3 cells thermoresistant. alpha B-crystallin accumulates in response to the synthetic glucocorticoid hormone dexamethasone. Dexamethasone-treated NIH 3T3 cells become thermoresistant to the same extent as they accumulate alpha B-crystallin. A cell clone in which alpha B-crystallin is superinduced upon heat shock acquires augmented thermotolerance. Expression of the ras oncogene causes a rapid but transient accumulation of alpha B-crystallin within 1 day. Later, sustained ras oncogene expression suppresses the dexamethasone-mediated alpha B-crystallin accumulation. Thus, oncogenic transformation triggered by the ras oncogene interferes with hormone-mediated accumulation of alpha B-crystallin and concomitant acquisition of thermoresistance. Other known heat shock proteins do not accumulate in response to ectopic alpha B-crystallin expression or to dexamethasone treatment. These results indicate that alpha B-crystallin can protect NIH 3T3 fibroblasts from thermal shock.


1985 ◽  
Vol 5 (1) ◽  
pp. 259-262 ◽  
Author(s):  
U P Thorgeirsson ◽  
T Turpeenniemi-Hujanen ◽  
J E Williams ◽  
E H Westin ◽  
C A Heilman ◽  
...  

NIH/3T3 cells transfected with DNA from malignant human tumors produced experimental and spontaneous metastases in nude mice. In contrast, parent or spontaneously transformed NIH/3T3 cells failed to metastasize. The transfected clones contained either activated c-Harvey-ras or N-ras oncogenes. A representative clone (T71-17SA2) which was used to assess selected cellular and host factors relevant to the metastatic process produced lung metastases in 100% of the NIH nude mice recipients, secreted augmented levels of type IV collagenase, and invaded human amnion basement membrane in vitro. Expression of the metastatic phenotype was not related to decreased sensitivity to natural killer cells or macrophage-mediated cytotoxicity. Analysis of the cellular DNA from the T71-17SA2 transfectant and its corresponding metastases, both of which contained activated N-ras oncogenes, revealed a twofold increase in the N-ras-specific DNA sequences in the metastatic cells. Thus, transfection with human tumor DNA containing activated ras oncogenes can induce the complete metastatic phenotype in NIH/3T3 cells by a mechanism apparently unrelated to immune cell killing.


Sign in / Sign up

Export Citation Format

Share Document