Physical evidence for cotranslational regulation of beta-tubulin mRNA degradation

1992 ◽  
Vol 12 (2) ◽  
pp. 791-799
Author(s):  
N G Theodorakis ◽  
D W Cleveland

Tubulin synthesis is controlled by an autoregulatory mechanism through which an increase in the intracellular concentration of tubulin subunits leads to specific degradation of tubulin mRNAs. The sequence necessary and sufficient for the selective degradation of a beta-tubulin mRNA in response to changes in the level of free tubulin subunits resides within the first 13 translated nucleotides that encode the amino-terminal sequence of beta-tubulin, Met-Arg-Glu-Ile (MREI). Previous results have suggested that the sequence responsible for autoregulation resides in the nascent peptide rather than in the mRNA per se, raising the possibility that the regulation of the stability of tubulin mRNA is mediated through binding of tubulin or some other cellular factor to the nascent amino-terminal tubulin peptide. We now show that this putative cotranslational interaction is not mediated by tubulin alone, as no meaningful binding is detectable between tubulin subunits and the amino-terminal beta-tubulin polypeptide. However, microinjection of a monoclonal antibody that binds to the beta-tubulin nascent peptide selectively disrupts the regulation of beta-tubulin, but not alpha-tubulin, synthesis. This finding provides direct evidence for cotranslational degradation of beta-tubulin mRNA mediated through binding of one or more cellular factors to the beta-tubulin nascent peptide.

1992 ◽  
Vol 12 (2) ◽  
pp. 791-799 ◽  
Author(s):  
N G Theodorakis ◽  
D W Cleveland

Tubulin synthesis is controlled by an autoregulatory mechanism through which an increase in the intracellular concentration of tubulin subunits leads to specific degradation of tubulin mRNAs. The sequence necessary and sufficient for the selective degradation of a beta-tubulin mRNA in response to changes in the level of free tubulin subunits resides within the first 13 translated nucleotides that encode the amino-terminal sequence of beta-tubulin, Met-Arg-Glu-Ile (MREI). Previous results have suggested that the sequence responsible for autoregulation resides in the nascent peptide rather than in the mRNA per se, raising the possibility that the regulation of the stability of tubulin mRNA is mediated through binding of tubulin or some other cellular factor to the nascent amino-terminal tubulin peptide. We now show that this putative cotranslational interaction is not mediated by tubulin alone, as no meaningful binding is detectable between tubulin subunits and the amino-terminal beta-tubulin polypeptide. However, microinjection of a monoclonal antibody that binds to the beta-tubulin nascent peptide selectively disrupts the regulation of beta-tubulin, but not alpha-tubulin, synthesis. This finding provides direct evidence for cotranslational degradation of beta-tubulin mRNA mediated through binding of one or more cellular factors to the beta-tubulin nascent peptide.


1994 ◽  
Vol 14 (6) ◽  
pp. 4076-4086 ◽  
Author(s):  
C J Bachurski ◽  
N G Theodorakis ◽  
R M Coulson ◽  
D W Cleveland

The steady-state level of alpha- and beta-tubulin synthesis is autoregulated by a posttranscriptional mechanism that selectively alters alpha- and beta-tubulin mRNA levels in response to changes in the unassembled tubulin subunit concentration. For beta-tubulin mRNAs, previous efforts have shown that this is the result of a selective mRNA degradation mechanism which involves cotranslational recognition of the nascent amino-terminal beta-tubulin tetrapeptide as it emerges from the ribosome. Site-directed mutagenesis is now used to determine that the minimal sequence requirement for conferring the full range of beta-tubulin autoregulation is the amino-terminal tetrapeptide MR(E/D)I. Although tubulin-dependent changes in alpha-tubulin mRNA levels are shown to result from changes in cytoplasmic mRNA stability, transfection of wild-type and mutated alpha-tubulin genes reveals that alpha- and beta-tubulin mRNA degradation is not mediated through a common pathway. Not only does the amino-terminal alpha-tubulin tetrapeptide MREC fail to confer regulated mRNA degradation, neither wild-type alpha-tubulin transgenes nor an alpha-tubulin gene mutated to encode an amino-terminal MREI yields mRNAs that are autoregulated. Further, although slowing ribosome transit accelerates the autoregulated degradation of endogenous alpha- and beta-tubulin mRNAs, degradation of alpha-tubulin transgene mRNAs is not enhanced, and in one case, the mRNA is actually stabilized. We conclude that, despite similarities, alpha- and beta-tubulin mRNA destabilization pathways utilize divergent determinants to link RNA instability to tubulin subunit concentrations.


1989 ◽  
Vol 9 (8) ◽  
pp. 3418-3428
Author(s):  
W Gu ◽  
N J Cowan

beta-Tubulin synthesis in eucaryotic cells is subject to control by an autoregulatory posttranscriptional mechanism in which the first four amino acids of the beta-tubulin polypeptide act either directly or indirectly to control the stability of beta-tubulin mRNA. To investigate the contribution of this amino-terminal domain to microtubule assembly and dynamics, we introduced a series of deletions encompassing amino acids 2 to 5 of a single mammalian beta-tubulin isotype, M beta 1. Constructs carrying such deletions were inserted into an expression vector, and the ability of the altered polypeptide to coassemble into microtubules was tested by using an anti-M beta 1-specific antibody. We show that the M beta 1 beta-tubulin polypeptide was competent for coassembly into microtubules in transient transfection experiments and in stably transfected cell lines when it lacked either amino acid 2 or amino acids 2 and 3. The capacity of these mutant beta-tubulins to coassemble into polymerized microtubules was only slightly diminished relative to that of unaltered beta-tubulin, and their expression did not influence the viability or growth properties of cell lines carrying these deletions. However, more extensive amino-terminal deletions either severely compromised or abolished the capacity for coassembly. In analogous experiments in which alterations were introduced into the amino-terminal domain of a mammalian alpha-tubulin isotype, M alpha 4, deletion of amino acid 2 did not affect the ability of the altered polypeptide to coassemble, although removal of additional amino-terminal residues essentially abolished the capacity for competent coassembly. The stability of the altered assembly-competent alpha- and beta-tubulin polypeptides was measured in pulse-chase experiments and found to be indistinguishable from the stability of the corresponding unaltered polypeptides. An assembly-competent M alpha 4 polypeptide carrying a deletion encompassing the 12 carboxy-terminal amino acids also had a half-life indistinguishable from that of the wild-type alpha-tubulin molecule. These data suggest that the universally conserved amino terminus of beta-tubulin acts largely in a regulatory role and that the carboxy-terminal domain of alpha-tubulin is not essential for coassembly in mammalian cells in vivo.


1989 ◽  
Vol 9 (8) ◽  
pp. 3418-3428 ◽  
Author(s):  
W Gu ◽  
N J Cowan

beta-Tubulin synthesis in eucaryotic cells is subject to control by an autoregulatory posttranscriptional mechanism in which the first four amino acids of the beta-tubulin polypeptide act either directly or indirectly to control the stability of beta-tubulin mRNA. To investigate the contribution of this amino-terminal domain to microtubule assembly and dynamics, we introduced a series of deletions encompassing amino acids 2 to 5 of a single mammalian beta-tubulin isotype, M beta 1. Constructs carrying such deletions were inserted into an expression vector, and the ability of the altered polypeptide to coassemble into microtubules was tested by using an anti-M beta 1-specific antibody. We show that the M beta 1 beta-tubulin polypeptide was competent for coassembly into microtubules in transient transfection experiments and in stably transfected cell lines when it lacked either amino acid 2 or amino acids 2 and 3. The capacity of these mutant beta-tubulins to coassemble into polymerized microtubules was only slightly diminished relative to that of unaltered beta-tubulin, and their expression did not influence the viability or growth properties of cell lines carrying these deletions. However, more extensive amino-terminal deletions either severely compromised or abolished the capacity for coassembly. In analogous experiments in which alterations were introduced into the amino-terminal domain of a mammalian alpha-tubulin isotype, M alpha 4, deletion of amino acid 2 did not affect the ability of the altered polypeptide to coassemble, although removal of additional amino-terminal residues essentially abolished the capacity for competent coassembly. The stability of the altered assembly-competent alpha- and beta-tubulin polypeptides was measured in pulse-chase experiments and found to be indistinguishable from the stability of the corresponding unaltered polypeptides. An assembly-competent M alpha 4 polypeptide carrying a deletion encompassing the 12 carboxy-terminal amino acids also had a half-life indistinguishable from that of the wild-type alpha-tubulin molecule. These data suggest that the universally conserved amino terminus of beta-tubulin acts largely in a regulatory role and that the carboxy-terminal domain of alpha-tubulin is not essential for coassembly in mammalian cells in vivo.


1994 ◽  
Vol 14 (6) ◽  
pp. 4076-4086
Author(s):  
C J Bachurski ◽  
N G Theodorakis ◽  
R M Coulson ◽  
D W Cleveland

The steady-state level of alpha- and beta-tubulin synthesis is autoregulated by a posttranscriptional mechanism that selectively alters alpha- and beta-tubulin mRNA levels in response to changes in the unassembled tubulin subunit concentration. For beta-tubulin mRNAs, previous efforts have shown that this is the result of a selective mRNA degradation mechanism which involves cotranslational recognition of the nascent amino-terminal beta-tubulin tetrapeptide as it emerges from the ribosome. Site-directed mutagenesis is now used to determine that the minimal sequence requirement for conferring the full range of beta-tubulin autoregulation is the amino-terminal tetrapeptide MR(E/D)I. Although tubulin-dependent changes in alpha-tubulin mRNA levels are shown to result from changes in cytoplasmic mRNA stability, transfection of wild-type and mutated alpha-tubulin genes reveals that alpha- and beta-tubulin mRNA degradation is not mediated through a common pathway. Not only does the amino-terminal alpha-tubulin tetrapeptide MREC fail to confer regulated mRNA degradation, neither wild-type alpha-tubulin transgenes nor an alpha-tubulin gene mutated to encode an amino-terminal MREI yields mRNAs that are autoregulated. Further, although slowing ribosome transit accelerates the autoregulated degradation of endogenous alpha- and beta-tubulin mRNAs, degradation of alpha-tubulin transgene mRNAs is not enhanced, and in one case, the mRNA is actually stabilized. We conclude that, despite similarities, alpha- and beta-tubulin mRNA destabilization pathways utilize divergent determinants to link RNA instability to tubulin subunit concentrations.


1989 ◽  
Vol 9 (3) ◽  
pp. 1049-1059
Author(s):  
D Burke ◽  
P Gasdaska ◽  
L Hartwell

The consequences of altering the levels of alpha- and beta-tubulin in Saccharomyces cerevisiae were examined by constructing fusions of the structural genes encoding the tubulins to strong galactose-inducible promoters. Overexpression of beta-tubulin (TUB2) was lethal: cells arrested in the G2 stage of the cell cycle exhibited an increased frequency of chromosome loss, were devoid of microtubules, and accumulated beta-tubulin in a novel structure. Overexpression of the major alpha-tubulin gene (TUB1) was not lethal and did not affect chromosome segregation. The rate of alpha-tubulin mRNA and protein synthesis was increased, but the protein did not accumulate. Overexpression of both alpha- and beta-tubulin together resulted in arrested cell division, and cells accumulated excess tubules that contained both alpha- and beta-tubulin. Transient overexpression of both tubulins resulted in a high frequency of chromosome loss. These data suggest that strong selective pressure exists to prevent excess accumulation of microtubules or beta-tubulin and suggest a model by which this goal may be achieved by selective degradation of unassembled alpha-tubulin. Furthermore, the phenotype of beta-tubulin overexpression is similar to the phenotype of a beta-tubulin deficiency. These results add to a number of recent studies demonstrating that mutant phenotypes generated by overexpression can be informative about the function of the gene product.


1988 ◽  
Vol 8 (3) ◽  
pp. 1224-1235
Author(s):  
T J Yen ◽  
D A Gay ◽  
J S Pachter ◽  
D W Cleveland

The expression of tubulin polypeptides in animal cells is controlled by an autoregulatory mechanism whereby increases in the tubulin subunit concentration result in rapid and specific degradation of tubulin mRNAs. We have now determined that the sequences that are necessary and sufficient to specify mouse beta-tubulin mRNAs as substrates for this autoregulated instability reside within the first 13 translated nucleotides (which encode the first four beta-tubulin amino acids Met-Arg-Glu-Ile). This domain has been functionally conserved throughout evolution, inasmuch as sequences isolated from the analogous region of human, chicken, and yeast beta-tubulin mRNAs also confer autoregulation. Further, for an RNA to be a substrate for regulation, not only must it carry the 13-nucleotide coding sequence, but it must also be ribosome bound and its translation must proceed 3' to codon 41.


1992 ◽  
Vol 12 (4) ◽  
pp. 1443-1450
Author(s):  
L A Stargell ◽  
D P Heruth ◽  
J Gaertig ◽  
M A Gorovsky

In cultured mammalian cells, an increase in the amount of tubulin monomer due to treatment with a microtubule-depolymerizing agent results in a rapid decline in tubulin synthesis. This autoregulatory response is mediated through a posttranscriptional mechanism which decreases the stability of tubulin message with no change in transcriptional activity of tubulin genes. Conversely, treatment with a microtubule-polymerizing drug, such as taxol, results in a slight increase in the synthesis of tubulin. Surprisingly, we find that two microtubule-depolymerizing agents, colchicine and oryzalin, actually cause an increase in alpha-tubulin synthesis and alpha-tubulin message in starved Tetrahymena thermophila. This increase is paralleled by an increase in transcription of alpha-tubulin sequences measured by run-on transcription, while the half-life of tubulin message measured by decay in the presence of actinomycin D does not change appreciably. Treatment of starved cells with taxol also produces an increase in alpha-tubulin synthesis via an increase in message abundance due to an increase in transcription of the alpha-tubulin gene. These results indicate that tubulin synthesis in T. thermophila is regulated very differently than in cultured mammalian cells.


1992 ◽  
Vol 12 (4) ◽  
pp. 1443-1450 ◽  
Author(s):  
L A Stargell ◽  
D P Heruth ◽  
J Gaertig ◽  
M A Gorovsky

In cultured mammalian cells, an increase in the amount of tubulin monomer due to treatment with a microtubule-depolymerizing agent results in a rapid decline in tubulin synthesis. This autoregulatory response is mediated through a posttranscriptional mechanism which decreases the stability of tubulin message with no change in transcriptional activity of tubulin genes. Conversely, treatment with a microtubule-polymerizing drug, such as taxol, results in a slight increase in the synthesis of tubulin. Surprisingly, we find that two microtubule-depolymerizing agents, colchicine and oryzalin, actually cause an increase in alpha-tubulin synthesis and alpha-tubulin message in starved Tetrahymena thermophila. This increase is paralleled by an increase in transcription of alpha-tubulin sequences measured by run-on transcription, while the half-life of tubulin message measured by decay in the presence of actinomycin D does not change appreciably. Treatment of starved cells with taxol also produces an increase in alpha-tubulin synthesis via an increase in message abundance due to an increase in transcription of the alpha-tubulin gene. These results indicate that tubulin synthesis in T. thermophila is regulated very differently than in cultured mammalian cells.


1989 ◽  
Vol 9 (3) ◽  
pp. 1049-1059 ◽  
Author(s):  
D Burke ◽  
P Gasdaska ◽  
L Hartwell

The consequences of altering the levels of alpha- and beta-tubulin in Saccharomyces cerevisiae were examined by constructing fusions of the structural genes encoding the tubulins to strong galactose-inducible promoters. Overexpression of beta-tubulin (TUB2) was lethal: cells arrested in the G2 stage of the cell cycle exhibited an increased frequency of chromosome loss, were devoid of microtubules, and accumulated beta-tubulin in a novel structure. Overexpression of the major alpha-tubulin gene (TUB1) was not lethal and did not affect chromosome segregation. The rate of alpha-tubulin mRNA and protein synthesis was increased, but the protein did not accumulate. Overexpression of both alpha- and beta-tubulin together resulted in arrested cell division, and cells accumulated excess tubules that contained both alpha- and beta-tubulin. Transient overexpression of both tubulins resulted in a high frequency of chromosome loss. These data suggest that strong selective pressure exists to prevent excess accumulation of microtubules or beta-tubulin and suggest a model by which this goal may be achieved by selective degradation of unassembled alpha-tubulin. Furthermore, the phenotype of beta-tubulin overexpression is similar to the phenotype of a beta-tubulin deficiency. These results add to a number of recent studies demonstrating that mutant phenotypes generated by overexpression can be informative about the function of the gene product.


Sign in / Sign up

Export Citation Format

Share Document