scholarly journals Complex intrachromosomal rearrangement in the process of amplification of the L-myc gene in small-cell lung cancer.

1992 ◽  
Vol 12 (4) ◽  
pp. 1747-1754 ◽  
Author(s):  
Y Sekido ◽  
T Takahashi ◽  
T P Mäkelä ◽  
Y Obata ◽  
R Ueda ◽  
...  

The L-myc gene was first isolated from a human small-cell lung cancer (SCLC) cell line on the basis of its amplification and sequence similarity to c-myc and N-myc. A new mechanism of L-myc activation which results from the production of rlf-L-myc fusion protein was recently reported. On the basis of our earlier observation of a rearrangement involving amplified L-myc in an SCLC cell line, ACC-LC-49, we decided to investigate this rearrangement in detail along with the structure of L-myc amplification units in five additional SCLC cell lines. We report here the identification of a novel genomic region, termed jal, which is distinct from rlf and is juxtaposed to and amplified with L-myc during the process of DNA amplification of the region encompassing L-myc. Long-range analysis using pulsed-field gel electrophoresis revealed that the amplified L-myc locus is involved in highly complex intrachromosomal rearrangements with jal and/or rlf. Our results also suggest that the simultaneous presence of rearrangements both in rlf intron 1 and in regions immediately upstream of L-myc may be necessary for the expression of rlf-L-myc chimeric transcripts.

1992 ◽  
Vol 12 (4) ◽  
pp. 1747-1754
Author(s):  
Y Sekido ◽  
T Takahashi ◽  
T P Mäkelä ◽  
Y Obata ◽  
R Ueda ◽  
...  

The L-myc gene was first isolated from a human small-cell lung cancer (SCLC) cell line on the basis of its amplification and sequence similarity to c-myc and N-myc. A new mechanism of L-myc activation which results from the production of rlf-L-myc fusion protein was recently reported. On the basis of our earlier observation of a rearrangement involving amplified L-myc in an SCLC cell line, ACC-LC-49, we decided to investigate this rearrangement in detail along with the structure of L-myc amplification units in five additional SCLC cell lines. We report here the identification of a novel genomic region, termed jal, which is distinct from rlf and is juxtaposed to and amplified with L-myc during the process of DNA amplification of the region encompassing L-myc. Long-range analysis using pulsed-field gel electrophoresis revealed that the amplified L-myc locus is involved in highly complex intrachromosomal rearrangements with jal and/or rlf. Our results also suggest that the simultaneous presence of rearrangements both in rlf intron 1 and in regions immediately upstream of L-myc may be necessary for the expression of rlf-L-myc chimeric transcripts.


2017 ◽  
Vol 7 (3) ◽  
Author(s):  
Chukwumaobim D.U. Nwokwu ◽  
Sameera R. Samarakoon ◽  
Desiree N. Karunaratne ◽  
Nuwanthi P. Katuvawila ◽  
Meran K. Ediriweera ◽  
...  

2021 ◽  
Vol 27 ◽  
pp. 101089
Author(s):  
Kazuo Ohara ◽  
Shintaro Kinoshita ◽  
Jun Ando ◽  
Yoko Azusawa ◽  
Midori Ishii ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 917
Author(s):  
Valeria Sorrenti ◽  
Agata Grazia D’Amico ◽  
Ignazio Barbagallo ◽  
Valeria Consoli ◽  
Salvo Grosso ◽  
...  

In order to maintain redox homeostasis, non-small-cell lung cancer (NSCLC) increases the activation of many antioxidant systems, including the heme-oxygenase (HO) system. The overexpression of HO-1 has been often associated with chemoresistance and tumor aggressiveness. Our results clearly showed an overexpression of the HO-1 protein in A549 NSCLC cell lines compared to that in non-cancerous cells. Thus, we hypothesized that “off-label” use of tin mesoporphyrin, a well-known HO activity inhibitor clinically used for neonatal hyperbilirubinemia, has potential use as an anti-cancer agent. The pharmacological inhibition of HO activity caused a reduction in cell proliferation and migration of A549. SnMP treatment caused an increase in oxidative stress, as demonstrated by the upregulation of reactive oxygen species (ROS) and the depletion of glutathione (GSH) content. To support these data, Western blot analysis was performed to analyze glucose-6-phosphate dehydrogenase (G6PD), TP53-induced glycolysis and the apoptosis regulator (TIGAR), and the glutamate cysteine ligase catalytic (GCLC) subunit, as they represent the main regulators of the pentose phosphate pathway (PPP) and glutathione synthesis, respectively. NCI-H292, a subtype of the NSCLC cell line, did not respond to SnMP treatment, possibly due to low basal levels of HO-1, suggesting a cellular-dependent antitumorigenic effect. Altogether, our results suggest HO activity inhibition may represent a potential target for selective chemotherapy in lung cancer subtypes.


2004 ◽  
Vol 95 (2) ◽  
pp. 142-148 ◽  
Author(s):  
Tatsuya Yoshimasu ◽  
Teruhisa Sakurai ◽  
Shoji Oura ◽  
Issei Hirai ◽  
Hirokazu Tanino ◽  
...  

2018 ◽  
Vol 51 (6) ◽  
pp. 2938-2954 ◽  
Author(s):  
Jing Shen ◽  
Shoubo Cao ◽  
Xin Sun ◽  
Bo Pan ◽  
Jingyan Cao ◽  
...  

Background/Aims: Sonodynamic therapy (SDT) is expected to be a new method to solve the clinical problems caused by advanced metastasis in patients with lung cancer. The use of ultrasound has the advantage of being noninvasive, with deep-penetration properties. This study explored the anti-tumor effect of SDT with a new sonosensitizer, sinoporphyrin sodium (DVDMS), on the human small cell lung cancer H446 cell line in vitro and in vivo. Methods: Absorption of DVDMS was detected by a fluorescence spectrophotometer, and DVDMS toxicity was determined using a Cell Counting Kit-8. Mitochondrial membrane potential (MMP) was assessed using the JC-1 fluorescent probe. Cell apoptosis was measured by flow cytometry, and apoptosis-related proteins were detected by western blotting. The expression of cytokines was measured using an enzyme-linked immunosorbent assay and quantitative real-time PCR. To verify the in vitro results, we detected tumor volumes and weight changes in a xenograft nude mouse model after DVDMS-SDT. Hematoxylin and eosin staining was used to observe changes to the tumor, heart, liver, spleen, lung, and kidney of the mice, and immunohistochemistry was used to examine changes in the expression of tumor CD34 and receptor-interacting protein kinase-3 (RIP3), while terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling was used to observe apoptosis in tumor tissues. Results: DVDMS-SDT-treated H446 cells increased the rate of cellular apoptosis and the levels of reactive oxygen species (ROS), cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, and caspase-10, and decreased the levels of MMP, RIP3, B-cell lymphoma 2, vascular endothelial growth factor, and tumor necrosis factor-α. The sonotoxic effect was mediated by ROS and was reduced by a ROS scavenger (N-acetyl-L-cysteine). In the in vivo mouse xenograft model, DVDMS-SDT showed efficient anti-cancer effects with no visible side effects. Conclusion: DVDMS-SDT induced apoptosis in H446 cells, in part by targeting mitochondria through the mitochondria-mediated apoptosis signaling pathway, and the extrinsic apoptosis pathway was also shown to be involved. Both apoptosis and changes in RIP3 expression were closely related to the generation of ROS. DVDMS-SDT will be advantageous for the management of small cell lung cancer due to its noninvasive characteristics.


Sign in / Sign up

Export Citation Format

Share Document