scholarly journals Proteolytic footprinting of transcription factor TFIIIA reveals different tightly binding sites for 5S RNA and 5S DNA.

1993 ◽  
Vol 13 (9) ◽  
pp. 5149-5158 ◽  
Author(s):  
D F Bogenhagen

Transcription factor IIIA (TFIIIA) employs an array of nine N-terminal zinc fingers to bind specifically to both 5S RNA and 5S DNA. The binding of TFIIIA to 5S RNA and 5S DNA was studied by using a protease footprinting technique. Brief treatment of free or bound TFIIA with trypsin or chymotrypsin generated fragments which were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fragments retaining the N terminus of TFIIA were identified by immunoblotting with an antibody directed against the N terminus of TFIIIA. Proteolytic footprinting of TFIIIA complexed with 5S DNA derivatives reinforced other evidence that the three N-terminal zinc fingers of TFIIIA bind most tightly to 5S DNA. Proteolytic footprinting of TFIIIA in reconstituted 7S ribonucleoprotein particles revealed different patterns of trypsin sensitivity for TFIIIA bound to oocyte versus somatic 5S RNA. Trypsin cleaved TFIIIA between zinc fingers 3 and 4 more readily when the protein was bound to somatic 5S RNA than when it was bound to oocyte 5S RNA. A tryptic fragment of TFIIIA containing zinc fingers 4 through 7 remained tightly associated with somatic 5S RNA. Zinc fingers 4 through 7 may represent a tightly binding site for 5S RNA in the same sense that fingers 1 through 3 represent a tightly binding site for 5S DNA.

1993 ◽  
Vol 13 (9) ◽  
pp. 5149-5158
Author(s):  
D F Bogenhagen

Transcription factor IIIA (TFIIIA) employs an array of nine N-terminal zinc fingers to bind specifically to both 5S RNA and 5S DNA. The binding of TFIIIA to 5S RNA and 5S DNA was studied by using a protease footprinting technique. Brief treatment of free or bound TFIIA with trypsin or chymotrypsin generated fragments which were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fragments retaining the N terminus of TFIIA were identified by immunoblotting with an antibody directed against the N terminus of TFIIIA. Proteolytic footprinting of TFIIIA complexed with 5S DNA derivatives reinforced other evidence that the three N-terminal zinc fingers of TFIIIA bind most tightly to 5S DNA. Proteolytic footprinting of TFIIIA in reconstituted 7S ribonucleoprotein particles revealed different patterns of trypsin sensitivity for TFIIIA bound to oocyte versus somatic 5S RNA. Trypsin cleaved TFIIIA between zinc fingers 3 and 4 more readily when the protein was bound to somatic 5S RNA than when it was bound to oocyte 5S RNA. A tryptic fragment of TFIIIA containing zinc fingers 4 through 7 remained tightly associated with somatic 5S RNA. Zinc fingers 4 through 7 may represent a tightly binding site for 5S RNA in the same sense that fingers 1 through 3 represent a tightly binding site for 5S DNA.


1989 ◽  
Vol 9 (2) ◽  
pp. 499-514
Author(s):  
Y Y Xing ◽  
A Worcel

DNase I footprints and affinity measurements showed that the C-terminal arm of Xenopus transcription factor IIIA interacts differently with different Xenopus 5S DNAs, forming three distinct types of transcription factor IIIA-5S DNA complexes: a somatic type, a major-oocyte (and pseudogene) type, and a trace-oocyte type. Site-directed mutagenesis on the major-oocyte 5S gene revealed that somatic-type changes at positions 53, 55, and 56 changed the structure of the transcription factor IIIA-5S DNA complex from major-oocyte to somatic, and a single trace-oocyte change at position 56 caused the change from major-oocyte to trace-oocyte complex. We further show that the somatic-type changes are accompanied by a marked enhancement in the rate of 5S RNA transcription, and we discuss the possible biological relevance of these findings.


1989 ◽  
Vol 9 (2) ◽  
pp. 499-514 ◽  
Author(s):  
Y Y Xing ◽  
A Worcel

DNase I footprints and affinity measurements showed that the C-terminal arm of Xenopus transcription factor IIIA interacts differently with different Xenopus 5S DNAs, forming three distinct types of transcription factor IIIA-5S DNA complexes: a somatic type, a major-oocyte (and pseudogene) type, and a trace-oocyte type. Site-directed mutagenesis on the major-oocyte 5S gene revealed that somatic-type changes at positions 53, 55, and 56 changed the structure of the transcription factor IIIA-5S DNA complex from major-oocyte to somatic, and a single trace-oocyte change at position 56 caused the change from major-oocyte to trace-oocyte complex. We further show that the somatic-type changes are accompanied by a marked enhancement in the rate of 5S RNA transcription, and we discuss the possible biological relevance of these findings.


2006 ◽  
Vol 357 (1) ◽  
pp. 275-291 ◽  
Author(s):  
Brian M. Lee ◽  
Jing Xu ◽  
Bryan K. Clarkson ◽  
Maria A. Martinez-Yamout ◽  
H. Jane Dyson ◽  
...  

Biochemistry ◽  
1991 ◽  
Vol 30 (9) ◽  
pp. 2495-2500 ◽  
Author(s):  
Qimin You ◽  
Nik Veldhoen ◽  
Florence Baudin ◽  
Paul J. Romaniuk

1986 ◽  
Vol 6 (12) ◽  
pp. 4723-4733
Author(s):  
L A Chodosh ◽  
R W Carthew ◽  
P A Sharp

A simple approach has been developed for the unambiguous identification and purification of sequence-specific DNA-binding proteins solely on the basis of their ability to bind selectively to their target sequences. Four independent methods were used to identify the promoter-specific RNA polymerase II transcription factor MLTF as a 46-kilodalton (kDa) polypeptide. First, a 46-kDa protein was specifically cross-linked by UV irradiation to a body-labeled DNA fragment containing the MLTF binding site. Second, MLTF sedimented through glycerol gradients at a rate corresponding to a protein of native molecular weight 45,000 to 50,000. Third, a 46-kDa protein was specifically retained on a biotin-streptavidin matrix only when the DNA fragment coupled to the matrix contained the MLTF binding site. Finally, proteins from the most highly purified fraction which were eluted and renatured from the 44- to 48-kDa region of a sodium dodecyl sulfate-polyacrylamide gel exhibited both binding and transcription-stimulatory activities. The DNA-binding activity was purified 100,000-fold by chromatography through three conventional columns plus a DNA affinity column. Purified MLTF was characterized with respect to the kinetic and thermodynamic properties of DNA binding. These parameters indicate a high degree of occupancy of MLTF binding sites in vivo.


Nature ◽  
1986 ◽  
Vol 323 (6084) ◽  
pp. 184-184
Author(s):  
M. McCall ◽  
T. Brown ◽  
W. N. Hunter ◽  
O. Kennard

Sign in / Sign up

Export Citation Format

Share Document