scholarly journals Effects of mutant Ran/TC4 proteins on cell cycle progression.

1994 ◽  
Vol 14 (6) ◽  
pp. 4216-4224 ◽  
Author(s):  
M Ren ◽  
E Coutavas ◽  
P D'Eustachio ◽  
M G Rush

Ran/TC4, a member of the RAS gene superfamily, encodes an abundant nuclear protein that binds and hydrolyzes GTP. Transient expression of a Ran/TC4 mutant protein deficient in GTP hydrolysis blocked DNA replication, suggesting a role for Ran/TC4 in the regulation of cell cycle progression. To test this possibility, we exploited an efficient transfection system, involving the introduction of cDNAs in the pMT2 vector into 293/Tag cells, to analyze phenotypes associated with mutant and wild-type Ran/TC4 expression. Expression of a Ran/TC4 mutant protein deficient in GTP hydrolysis inhibited proliferation of transfected cells by arresting them predominantly in the G2, but also in the G1, phase of the cell cycle. Deletion of an acidic carboxy-terminal hexapeptide from the Ran/TC4 mutant did not alter its nuclear localization but did block its inhibitory effect on cell cycle progression. These data suggest that normal progression of the cell cycle is coupled to the operation of a Ran/TC4 GTPase cycle. Mediators of this coupling are likely to include the nuclear regulator of chromosome condensation 1 protein and the mitosis-promoting factor complex.

1994 ◽  
Vol 14 (6) ◽  
pp. 4216-4224
Author(s):  
M Ren ◽  
E Coutavas ◽  
P D'Eustachio ◽  
M G Rush

Ran/TC4, a member of the RAS gene superfamily, encodes an abundant nuclear protein that binds and hydrolyzes GTP. Transient expression of a Ran/TC4 mutant protein deficient in GTP hydrolysis blocked DNA replication, suggesting a role for Ran/TC4 in the regulation of cell cycle progression. To test this possibility, we exploited an efficient transfection system, involving the introduction of cDNAs in the pMT2 vector into 293/Tag cells, to analyze phenotypes associated with mutant and wild-type Ran/TC4 expression. Expression of a Ran/TC4 mutant protein deficient in GTP hydrolysis inhibited proliferation of transfected cells by arresting them predominantly in the G2, but also in the G1, phase of the cell cycle. Deletion of an acidic carboxy-terminal hexapeptide from the Ran/TC4 mutant did not alter its nuclear localization but did block its inhibitory effect on cell cycle progression. These data suggest that normal progression of the cell cycle is coupled to the operation of a Ran/TC4 GTPase cycle. Mediators of this coupling are likely to include the nuclear regulator of chromosome condensation 1 protein and the mitosis-promoting factor complex.


2019 ◽  
Vol 26 (11) ◽  
pp. 800-818
Author(s):  
Zujian Xiong ◽  
Xuejun Li ◽  
Qi Yang

Pituitary Tumor Transforming Gene (PTTG) of human is known as a checkpoint gene in the middle and late stages of mitosis, and is also a proto-oncogene that promotes cell cycle progression. In the nucleus, PTTG works as securin in controlling the mid-term segregation of sister chromatids. Overexpression of PTTG, entering the nucleus with the help of PBF in pituitary adenomas, participates in the regulation of cell cycle, interferes with DNA repair, induces genetic instability, transactivates FGF-2 and VEGF and promotes angiogenesis and tumor invasion. Simultaneously, overexpression of PTTG induces tumor cell senescence through the DNA damage pathway, making pituitary adenoma possessing the potential self-limiting ability. To elucidate the mechanism of PTTG in the regulation of pituitary adenomas, we focus on both the positive and negative function of PTTG and find out key factors interacted with PTTG in pituitary adenomas. Furthermore, we discuss other possible mechanisms correlate with PTTG in pituitary adenoma initiation and development and the potential value of PTTG in clinical treatment.


1997 ◽  
Vol 110 (19) ◽  
pp. 2345-2357 ◽  
Author(s):  
A. Battistoni ◽  
G. Guarguaglini ◽  
F. Degrassi ◽  
C. Pittoggi ◽  
A. Palena ◽  
...  

RanBP1 is a molecular partner of the Ran GTPase, which is implicated in the control of several processes, including DNA replication, mitotic entry and exit, cell cycle progression, nuclear structure, protein import and RNA export. While most genes encoding Ran-interacting partners are constitutively active, transcription of the RanBP1 mRNA is repressed in non proliferating cells, is activated at the G1/S transition in cycling cells and peaks during S phase. We report here that forced expression of the RanBP1 gene disrupts the orderly execution of the cell division cycle at several stages, causing inhibition of DNA replication, defective mitotic exit and failure of chromatin decondensation during the telophase-to-interphase transition in cells that achieve nuclear duplication and chromosome segregation. These results suggest that deregulated RanBP1 activity interferes with the Ran GTPase cycle and prevents the functioning of the Ran signalling system during the cell cycle.


2001 ◽  
pp. 220-227
Author(s):  
Owen W. J. Prall ◽  
Eileen M. Rogan ◽  
Elizabeth A. Musgrove ◽  
Colin K. W. Watts ◽  
Robert L. Sutherland

2020 ◽  
Vol 52 (10) ◽  
pp. 1637-1651 ◽  
Author(s):  
Sang-Min Jang ◽  
Christophe E. Redon ◽  
Bhushan L. Thakur ◽  
Meriam K. Bahta ◽  
Mirit I. Aladjem

Abstract The last decade has revealed new roles for Cullin-RING ubiquitin ligases (CRLs) in a myriad of cellular processes, including cell cycle progression. In addition to CRL1, also named SCF (SKP1-Cullin 1-F box protein), which has been known for decades as an important factor in the regulation of the cell cycle, it is now evident that all eight CRL family members are involved in the intricate cellular pathways driving cell cycle progression. In this review, we summarize the structure of CRLs and their functions in driving the cell cycle. We focus on how CRLs target key proteins for degradation or otherwise alter their functions to control the progression over the various cell cycle phases leading to cell division. We also summarize how CRLs and the anaphase-promoting complex/cyclosome (APC/C) ligase complex closely cooperate to govern efficient cell cycle progression.


Sign in / Sign up

Export Citation Format

Share Document