scholarly journals GATA-binding proteins regulate the human gonadotropin alpha-subunit gene in the placenta and pituitary gland.

1994 ◽  
Vol 14 (8) ◽  
pp. 5592-5602 ◽  
Author(s):  
D J Steger ◽  
J H Hecht ◽  
P L Mellon

The human glycoprotein hormone alpha-subunit gene is expressed in two quite dissimilar tissues, the placenta and anterior pituitary. Tissue-specific expression is determined by combinations of elements, some of which are common and others of which are specific to each tissue. In the placenta, a composite enhancer confers specific expression. It contains four protein-binding sites: two cyclic AMP (cAMP) response elements that bind CREB, a trophoblast-specific element that binds TSEB, and a sequence motif, AGATAA, that matches the consensus binding site for a family of transcription factors termed the GATA-binding proteins. In pituitary gonadotropes, the cAMP response elements remain important for expression, TSEB is absent, and elements further upstream participate in tissue-specific expression. Here we establish a regulatory role for the GATA element in both the placenta and pituitary by demonstrating that a mutation of this element decreases alpha-subunit gene expression 15-fold in JEG-3 human placental cells and 2.5-fold in alpha T3-1 mouse pituitary gonadotropes. In JEG-3 cells, human GATA-2 (hGATA-2) and hGATA-3 are highly expressed and both proteins bind to the alpha-subunit gene GATA element. In alpha T3-1 cells, the GATA motif is bound by mouse GATA-2 (mGATA-2) and an mGATA-4-related protein. Cotransfection of hGATA-2 or hGATA-3 into alpha T3-1 cells activates the alpha-subunit gene threefold. These studies establish a role for the GATA-binding proteins in placental and pituitary alpha-subunit gene expression, significantly expanding the known target genes of GATA-2, GATA-3, and perhaps GATA-4.

1994 ◽  
Vol 14 (8) ◽  
pp. 5592-5602
Author(s):  
D J Steger ◽  
J H Hecht ◽  
P L Mellon

The human glycoprotein hormone alpha-subunit gene is expressed in two quite dissimilar tissues, the placenta and anterior pituitary. Tissue-specific expression is determined by combinations of elements, some of which are common and others of which are specific to each tissue. In the placenta, a composite enhancer confers specific expression. It contains four protein-binding sites: two cyclic AMP (cAMP) response elements that bind CREB, a trophoblast-specific element that binds TSEB, and a sequence motif, AGATAA, that matches the consensus binding site for a family of transcription factors termed the GATA-binding proteins. In pituitary gonadotropes, the cAMP response elements remain important for expression, TSEB is absent, and elements further upstream participate in tissue-specific expression. Here we establish a regulatory role for the GATA element in both the placenta and pituitary by demonstrating that a mutation of this element decreases alpha-subunit gene expression 15-fold in JEG-3 human placental cells and 2.5-fold in alpha T3-1 mouse pituitary gonadotropes. In JEG-3 cells, human GATA-2 (hGATA-2) and hGATA-3 are highly expressed and both proteins bind to the alpha-subunit gene GATA element. In alpha T3-1 cells, the GATA motif is bound by mouse GATA-2 (mGATA-2) and an mGATA-4-related protein. Cotransfection of hGATA-2 or hGATA-3 into alpha T3-1 cells activates the alpha-subunit gene threefold. These studies establish a role for the GATA-binding proteins in placental and pituitary alpha-subunit gene expression, significantly expanding the known target genes of GATA-2, GATA-3, and perhaps GATA-4.


1992 ◽  
Vol 12 (5) ◽  
pp. 2143-2153 ◽  
Author(s):  
F Horn ◽  
J J Windle ◽  
K M Barnhart ◽  
P L Mellon

The molecular mechanisms for the development of multiple distinct endocrine cell types in the anterior pituitary have been an area of intensive investigation. Though the homeodomain protein Pit-1/GHF-1 is known to be involved in differentiation of the somatotrope and lactotrope lineages, which produce growth hormone and prolactin, respectively, little is known of the transcriptional regulators important for the gonadotrope cell lineage, which produces the glycoprotein hormones luteinizing hormone and follicle-stimulating hormone. Using transgenic mice and transfection into a novel gonadotrope lineage cell line, we have identified a regulatory element that confers gonadotrope-specific expression to the glycoprotein hormone alpha-subunit gene. A tissue-specific factor that binds to this element is purified and characterized as a 54-kDa protein which is present uniquely in cells of the gonadotrope lineage and is not Pit-1/GHF-1. The human and equine alpha-subunit genes are also expressed in placental cells. However, the previously characterized placental transcription factors designated TSEB and alpha-ACT are not found in the pituitary gonadotrope cells, indicating that independent mechanisms confer expression of these genes in the two different tissues.


1992 ◽  
Vol 12 (5) ◽  
pp. 2143-2153
Author(s):  
F Horn ◽  
J J Windle ◽  
K M Barnhart ◽  
P L Mellon

The molecular mechanisms for the development of multiple distinct endocrine cell types in the anterior pituitary have been an area of intensive investigation. Though the homeodomain protein Pit-1/GHF-1 is known to be involved in differentiation of the somatotrope and lactotrope lineages, which produce growth hormone and prolactin, respectively, little is known of the transcriptional regulators important for the gonadotrope cell lineage, which produces the glycoprotein hormones luteinizing hormone and follicle-stimulating hormone. Using transgenic mice and transfection into a novel gonadotrope lineage cell line, we have identified a regulatory element that confers gonadotrope-specific expression to the glycoprotein hormone alpha-subunit gene. A tissue-specific factor that binds to this element is purified and characterized as a 54-kDa protein which is present uniquely in cells of the gonadotrope lineage and is not Pit-1/GHF-1. The human and equine alpha-subunit genes are also expressed in placental cells. However, the previously characterized placental transcription factors designated TSEB and alpha-ACT are not found in the pituitary gonadotrope cells, indicating that independent mechanisms confer expression of these genes in the two different tissues.


1989 ◽  
Vol 564 (1 Regulation of) ◽  
pp. 77-85 ◽  
Author(s):  
J. H. NILSON ◽  
J. A. BOKAR ◽  
B. ANDERSEN ◽  
R. BOHINSKI ◽  
G. KENNEDY ◽  
...  

2000 ◽  
Vol 20 (9) ◽  
pp. 3316-3329 ◽  
Author(s):  
Carsten Müller ◽  
Carol Readhead ◽  
Sven Diederichs ◽  
Gregory Idos ◽  
Rong Yang ◽  
...  

ABSTRACT Gene expression in mammalian organisms is regulated at multiple levels, including DNA accessibility for transcription factors and chromatin structure. Methylation of CpG dinucleotides is thought to be involved in imprinting and in the pathogenesis of cancer. However, the relevance of methylation for directing tissue-specific gene expression is highly controversial. The cyclin A1 gene is expressed in very few tissues, with high levels restricted to spermatogenesis and leukemic blasts. Here, we show that methylation of the CpG island of the human cyclin A1 promoter was correlated with nonexpression in cell lines, and the methyl-CpG binding protein MeCP2 suppressed transcription from the methylated cyclin A1 promoter. Repression could be relieved by trichostatin A. Silencing of a cyclin A1 promoter-enhanced green fluorescent protein (EGFP) transgene in stable transfected MG63 osteosarcoma cells was also closely associated with de novo promoter methylation. Cyclin A1 could be strongly induced in nonexpressing cell lines by trichostatin A but not by 5-aza-cytidine. The cyclin A1 promoter-EGFP construct directed tissue-specific expression in male germ cells of transgenic mice. Expression in the testes of these mice was independent of promoter methylation, and even strong promoter methylation did not suppress promoter activity. MeCP2 expression was notably absent in EGFP-expressing cells. Transcription from the transgenic cyclin A1 promoter was repressed in most organs outside the testis, even when the promoter was not methylated. These data show the association of methylation with silencing of the cyclin A1 gene in cancer cell lines. However, appropriate tissue-specific repression of the cyclin A1 promoter occurs independently of CpG methylation.


1989 ◽  
Vol 9 (11) ◽  
pp. 5113-5122
Author(s):  
J A Bokar ◽  
R A Keri ◽  
T A Farmerie ◽  
R A Fenstermaker ◽  
B Andersen ◽  
...  

The single-copy gene encoding the alpha subunit of glycoprotein hormones is expressed in the pituitaries of all mammals and in the placentas of only primates and horses. We have systematically analyzed the promoter-regulatory elements of the human and bovine alpha-subunit genes to elucidate the molecular mechanisms underlying their divergent patterns of tissue-specific expression. This analysis entailed the use of transient expression assays in a chorionic gonadotropin-secreting human choriocarcinoma cell line, protein-DNA binding assays, and expression of chimeric forms of human or bovine alpha subunit genes in transgenic mice. From the results, we conclude that placental expression of the human alpha-subunit gene requires a functional cyclic AMP response element (CRE) that is present as a tandem repeat in the promoter-regulatory region. In contrast, the promoter-regulatory region of the bovine alpha-subunit gene, as well as of the rat and mouse genes, was found to contain a single CRE homolog that differed from its human counterpart by a single nucleotide. This difference substantially reduced the binding affinity of the bovine CRE homolog for the nuclear protein that bound to the human alpha CRE and thereby rendered the bovine alpha-subunit promoter inactive in human choriocarcinoma cells. However, conversion of the bovine alpha CRE homolog to an authentic alpha CRE restored activity to the bovine alpha-subunit promoter in choriocarcinoma cells. Similarly, a human but not a bovine alpha transgene was expressed in placenta in transgenic mice. Thus, placenta-specific expression of the human alpha-subunit gene may be the consequence of the recent evolution of a functional CRE. Expression of the human alpha transgene in mouse placenta further suggests that evolution of placenta-specific trans-acting factors preceded the appearance of this element. Finally, in contrast to their divergent patterns of placental expression, both the human and bovine alpha-subunit transgenes were expressed in mouse pituitary, indicating differences in the composition of the enhancers required for pituitary- and placenta-specific expression.


Sign in / Sign up

Export Citation Format

Share Document