scholarly journals The amino-terminal domain of yeast U1-70K is necessary and sufficient for function.

1995 ◽  
Vol 15 (11) ◽  
pp. 6341-6350 ◽  
Author(s):  
P J Hilleren ◽  
H Y Kao ◽  
P G Siliciano

The Saccharomyces cerevisiae SNP1 gene encodes a protein that shares 30% amino acid identity with the mammalian U1 small nuclear ribonucleoprotein particle protein 70K (U1-70K). We have demonstrated that yeast strains in which the SNP1 gene was disrupted are viable but exhibit greatly increased doubling times and severe temperature sensitivity. Furthermore, snp1-null strains are defective in pre-mRNA splicing. We have tested deletion alleles of SNP1 for their ability to complement these phenotypes. We found that the highly conserved RNA recognition motif consensus domain of Snp1 is not required for complementation of the snp1-null growth or splicing defects nor for the in vivo association with the U1 small nuclear ribonucleoprotein particle. However, the amino-terminal domain of Snp1, less strongly conserved, is necessary and sufficient for complementation.

1990 ◽  
Vol 10 (12) ◽  
pp. 6417-6425 ◽  
Author(s):  
N Abovich ◽  
P Legrain ◽  
M Rosbash

PRP6 and PRP9 are two yeast genes involved in pre-mRNA splicing. Incubation at 37 degrees C of strains that carry temperature-sensitive mutations at these loci inhibits splicing, and in vivo experiments suggested that they might be involved in commitment complex formation (P. Legrain and M. Rosbash, Cell 57:573-583, 1989). To examine the specific role that the PRP6 and PRP9 products may play in splicing or pre-mRNA transport to the cytoplasm, we have characterized in vitro splicing and spliceosome assembly in extracts derived from prp6 and prp9 mutant strains. We have also characterized RNAs that are specifically immunoprecipitated with the PRP6 and PRP9 proteins. Both approaches indicate that PRP6 encodes a U4/U6 small nuclear ribonucleoprotein particle (snRNP) protein and that the PRP9 protein is required for a stable U2 snRNP-substrate interaction. The results are discussed with reference to the previously observed in vivo phenotypes of these mutants.


1990 ◽  
Vol 10 (6) ◽  
pp. 2492-2502
Author(s):  
R Mancebo ◽  
P C Lo ◽  
S M Mount

A genomic clone encoding the Drosophila U1 small nuclear ribonucleoprotein particle 70K protein was isolated by hybridization with a human U1 small nuclear ribonucleoprotein particle 70K protein cDNA. Southern blot and in situ hybridizations showed that this U1 70K gene is unique in the Drosophila genome, residing at cytological position 27D1,2. Polyadenylated transcripts of 1.9 and 3.1 kilobases were observed. While the 1.9-kilobase mRNA is always more abundant, the ratio of these two transcripts is developmentally regulated. Analysis of cDNA and genomic sequences indicated that these two RNAs encode an identical protein with a predicted molecular weight of 52,879. Comparison of the U1 70K proteins predicted from Drosophila, human, and Xenopus cDNAs revealed 68% amino acid identity in the most amino-terminal 214 amino acids, which include a sequence motif common to many proteins which bind RNA. The carboxy-terminal half is less well conserved but is highly charged and contains distinctive arginine-rich regions in all three species. These arginine-rich regions contain stretches of arginine-serine dipeptides like those found in transformer, transformer-2, and suppressor-of-white-apricot proteins, all of which have been identified as regulators of mRNA splicing in Drosophila melanogaster.


1996 ◽  
Vol 16 (3) ◽  
pp. 960-967 ◽  
Author(s):  
H Y Kao ◽  
P G Siliciano

We have used suppressor genetics to identify factors that interact with Saccharomyces cerevisiae U1 small nuclear RNA (snRNA). In this way, we isolated PRP40-1, a suppressor that restores growth at 18 degrees C to a strain bearing a cold-sensitive mutation in U1 RNA. A gene disruption experiment shows that PRP40 is an essential gene. To study the role of PRP40 in splicing, we created a pool of temperature-sensitive prp40 strains. Primer extension analysis of intron-containing transcripts in prp40 temperature-sensitive strains reveals a splicing defect, indicating that Prp40 plays a direct role in pre-mRNA splicing. In addition, U1 RNA coimmunoprecipitates with Pro40, indicating that Prp40 is bound to the U1 small nuclear ribonucleoprotein particle in vivo. Therefore, we conclude that PRP40 encodes a novel, essential splicing component that associates with the yeast U1 small nuclear ribonucleoprotein particle.


1990 ◽  
Vol 10 (12) ◽  
pp. 6417-6425
Author(s):  
N Abovich ◽  
P Legrain ◽  
M Rosbash

PRP6 and PRP9 are two yeast genes involved in pre-mRNA splicing. Incubation at 37 degrees C of strains that carry temperature-sensitive mutations at these loci inhibits splicing, and in vivo experiments suggested that they might be involved in commitment complex formation (P. Legrain and M. Rosbash, Cell 57:573-583, 1989). To examine the specific role that the PRP6 and PRP9 products may play in splicing or pre-mRNA transport to the cytoplasm, we have characterized in vitro splicing and spliceosome assembly in extracts derived from prp6 and prp9 mutant strains. We have also characterized RNAs that are specifically immunoprecipitated with the PRP6 and PRP9 proteins. Both approaches indicate that PRP6 encodes a U4/U6 small nuclear ribonucleoprotein particle (snRNP) protein and that the PRP9 protein is required for a stable U2 snRNP-substrate interaction. The results are discussed with reference to the previously observed in vivo phenotypes of these mutants.


1990 ◽  
Vol 10 (6) ◽  
pp. 2492-2502 ◽  
Author(s):  
R Mancebo ◽  
P C Lo ◽  
S M Mount

A genomic clone encoding the Drosophila U1 small nuclear ribonucleoprotein particle 70K protein was isolated by hybridization with a human U1 small nuclear ribonucleoprotein particle 70K protein cDNA. Southern blot and in situ hybridizations showed that this U1 70K gene is unique in the Drosophila genome, residing at cytological position 27D1,2. Polyadenylated transcripts of 1.9 and 3.1 kilobases were observed. While the 1.9-kilobase mRNA is always more abundant, the ratio of these two transcripts is developmentally regulated. Analysis of cDNA and genomic sequences indicated that these two RNAs encode an identical protein with a predicted molecular weight of 52,879. Comparison of the U1 70K proteins predicted from Drosophila, human, and Xenopus cDNAs revealed 68% amino acid identity in the most amino-terminal 214 amino acids, which include a sequence motif common to many proteins which bind RNA. The carboxy-terminal half is less well conserved but is highly charged and contains distinctive arginine-rich regions in all three species. These arginine-rich regions contain stretches of arginine-serine dipeptides like those found in transformer, transformer-2, and suppressor-of-white-apricot proteins, all of which have been identified as regulators of mRNA splicing in Drosophila melanogaster.


1996 ◽  
Vol 16 (9) ◽  
pp. 5036-5047 ◽  
Author(s):  
G Deshpande ◽  
M E Samuels ◽  
P D Schedl

The Drosophila sex determination gene Sex-lethal controls its own expression and the expression of downstream target genes such as transformer by regulating RNA splicing. Genetic and molecular studies have established that Sxl requires the product of another gene, snf, to autoregulate the splicing of its own transcripts. snf has recently been shown to encode a Drosophila U1 and U2 small nuclear ribonucleoprotein particle protein. In the work reported here, we demonstrate that the Sxl and Snf proteins can interact directly in vitro and that these two proteins are part of an RNase-sensitive complex in vivo which can be immunoprecipitated with the Sxl antibody. Unlike bulk Snf protein, which sediments slowly in sucrose gradients, the Snf protein associated with Sxl is in a large, rapidly sedimenting complex. Detailed characterization of the Sxl-Snf complexes from cross-linked extracts indicates that these complexes contain additional small nuclear ribonucleoprotein particle proteins and the U1 and U2 small nuclear RNAs. Finally, consistent with the RNase sensitivity of the Sxl-Snf complexes, Sxl transcripts can also be immunoprecipitated by Sxl antibodies. On the basis of the physical interactions between Sxl and Snf, we present a model for Sxl splicing regulation. This model helps explain how the Sxl protein is able to promote the sex-specific splicing of Sxl transcripts, utilizing target sequences that are distant from the regulated splice sites.


1990 ◽  
Vol 10 (9) ◽  
pp. 4480-4485
Author(s):  
J Andersen ◽  
R J Feeney ◽  
G W Zieve

The addition of urea to sodium dodecyl sulfate (SDS)-polyacrylamide gels has allowed the identification and characterization of the small nuclear ribonucleoprotein particle (snRNP) D' protein and has also improved resolution of the E, F, and G snRNP core proteins. In standard SDS-polyacrylamide gels, the D' and D snRNP core proteins comigrate at approximately 16 kilodaltons. The addition of urea to the separating gel caused the D' protein to shift to a slower electrophoretic mobility that is distinct from that of the D protein. The shift to a slower electrophoretic mobility in the presence of urea suggests that the D' protein has extensive secondary structure that is not totally disrupted by SDS alone. Both N-terminal sequencing and partial peptide maps indicate that the D and D' proteins are distinct gene products, and the sequence data have identified the faster moving of the two proteins as the previously cloned D protein (L. A. Rokeach, J. A. Haselby, and S. O. Hoch, Proc. Natl. Acad. Sci. USA 85:4832-4836, 1988). In the cytoplasm, the D protein is found primarily in the small-nuclear-RNA-free 6S protein complexes, while the D' protein is found primarily in the 20S protein complexes. Like the D protein, the D' protein is an autoantigen in patients with systemic lupus erythematosus and is recognized by some of the Sm class of autoimmune antisera.


Sign in / Sign up

Export Citation Format

Share Document