scholarly journals Transcriptional regulation of the mouse alpha A-crystallin gene: activation dependent on a cyclic AMP-responsive element (DE1/CRE) and a Pax-6-binding site.

1995 ◽  
Vol 15 (2) ◽  
pp. 653-660 ◽  
Author(s):  
A Cvekl ◽  
F Kashanchi ◽  
C M Sax ◽  
J N Brady ◽  
J Piatigorsky

Two cis-acting promoter elements (-108 to -100 and -49 to -33) of the mouse alpha A-crystallin gene, which is highly expressed in the ocular lens, were studied. Here we show that DE1 (-108 to -100; 5'TGACGGTG3'), which resembles the consensus cyclic AMP (cAMP)-responsive element sequence (CRE; 5'TGACGT[A/C][A/G]3'), behaves like a functional CRE site. Transfection experiments and electrophoretic mobility shift assays (EMSAs) using site-specific mutations correlated a loss of function with deviations from the CRE consensus sequence. Results of EMSAs in the presence of antisera against CREB, delta CREB, and CREM were consistent with the binding of CREB-like proteins to the DE1 sequence. Stimulation of alpha A-crystallin promoter activity via 8-bromo-cAMP, forskolin, or human T-cell leukemia virus type I Tax1 in transfections and reduction of activity of this site in cell-free transcription tests by competition with the somatostatin CRE supported the idea that DE1 is a functional CRE. Finally, Pax-6, a member of the paired-box family of transcription factors, activated the mouse alpha A-crystallin promoter in cotransfected COP-8 fibroblasts and bound to the -59 to -29 promoter sequence in EMSAs. These data provide evidence for a synergistic role of Pax-6 and CREB-like proteins for high expression of the mouse alpha A-crystallin gene in the lens.

1994 ◽  
Vol 14 (7) ◽  
pp. 4958-4974
Author(s):  
K G Low ◽  
H M Chu ◽  
P M Schwartz ◽  
G M Daniels ◽  
M H Melner ◽  
...  

Human proenkephalin gene transcription is transactivated by human T-cell leukemia virus type I (HTLV-I) Tax in human Jurkat T lymphocytes. This transactivation was further enhanced in Jurkat cells treated with concanavalin A, cyclic AMP, or 12-O-tetradecanoylphorbol-13-acetate. Deletion and cis-element transfer analyses of the human proenkephalin promoter identified a cyclic AMP-responsive AP-1 element (-92 to -86) as both necessary and sufficient to confer Tax-dependent transactivation. Different AP-1 or cyclic AMP-responsive element-binding protein (CREB)/activating transcription factor (ATF) proteins which bind this element were expressed in murine teratocarcinoma F9 cells to identify those capable of mediating Tax-dependent transactivation of human proenkephalin gene transcription. Although CREB, c-Fos, c-Jun, and JunD did not have significant effects, JunB inhibited the Tax-dependent transactivation. In contrast, ATF3 dramatically induced Tax-dependent transactivation, which was further enhanced by protein kinase A. Electrophoretic mobility shift assays with recombinant fusion proteins expressed and purified from bacteria indicate that the DNA-binding activity of ATF3 is also dramatically enhanced by Tax. Chimeric fusion proteins consisting of the DNA-binding domain of the yeast transcription factor Gal4 and the amino-terminal domain (residues 1 to 66) of ATF3 were able to mediate Tax-dependent transactivation of a Gal4-responsive promoter, which suggests a direct involvement of this region of ATF3. Recombinant fusion proteins of glutathione S-transferase with either the amino- or carboxy-terminal (residues 139 to 181) domain of ATF3 were able to specifically interact with Tax. Furthermore, specific antisera directed against Tax coimmunoprecipitated ATF3 only in the presence of Tax.


1994 ◽  
Vol 14 (7) ◽  
pp. 4958-4974 ◽  
Author(s):  
K G Low ◽  
H M Chu ◽  
P M Schwartz ◽  
G M Daniels ◽  
M H Melner ◽  
...  

Human proenkephalin gene transcription is transactivated by human T-cell leukemia virus type I (HTLV-I) Tax in human Jurkat T lymphocytes. This transactivation was further enhanced in Jurkat cells treated with concanavalin A, cyclic AMP, or 12-O-tetradecanoylphorbol-13-acetate. Deletion and cis-element transfer analyses of the human proenkephalin promoter identified a cyclic AMP-responsive AP-1 element (-92 to -86) as both necessary and sufficient to confer Tax-dependent transactivation. Different AP-1 or cyclic AMP-responsive element-binding protein (CREB)/activating transcription factor (ATF) proteins which bind this element were expressed in murine teratocarcinoma F9 cells to identify those capable of mediating Tax-dependent transactivation of human proenkephalin gene transcription. Although CREB, c-Fos, c-Jun, and JunD did not have significant effects, JunB inhibited the Tax-dependent transactivation. In contrast, ATF3 dramatically induced Tax-dependent transactivation, which was further enhanced by protein kinase A. Electrophoretic mobility shift assays with recombinant fusion proteins expressed and purified from bacteria indicate that the DNA-binding activity of ATF3 is also dramatically enhanced by Tax. Chimeric fusion proteins consisting of the DNA-binding domain of the yeast transcription factor Gal4 and the amino-terminal domain (residues 1 to 66) of ATF3 were able to mediate Tax-dependent transactivation of a Gal4-responsive promoter, which suggests a direct involvement of this region of ATF3. Recombinant fusion proteins of glutathione S-transferase with either the amino- or carboxy-terminal (residues 139 to 181) domain of ATF3 were able to specifically interact with Tax. Furthermore, specific antisera directed against Tax coimmunoprecipitated ATF3 only in the presence of Tax.


Virology ◽  
1999 ◽  
Vol 254 (2) ◽  
pp. 235-244 ◽  
Author(s):  
Kazu Okuma ◽  
Minoru Nakamura ◽  
Shuji Nakano ◽  
Yoshiyuki Niho ◽  
Yoshiharu Matsuura

1994 ◽  
Vol 14 (8) ◽  
pp. 5371-5383 ◽  
Author(s):  
X Xu ◽  
D A Brown ◽  
I Kitajima ◽  
J Bilakovics ◽  
L W Fey ◽  
...  

To analyze regulation of the human T-cell leukemia virus type I (HTLV-I) long terminal repeat (LTR), cell lines were generated from LTR-tax x LTR-beta-galactosidase (beta-Gal) doubly transgenic mouse fibroblastic tumors. The HTLV-I LTR directs expression of both the tax and lacZ genes, and Tax up-modulates both promoters in primary cells. However, once cells were transformed by tax, beta-Gal but not tax expression was suppressed. Supertransformation of these cells with v-src suppressed both beta-Gal and tax expression. This suppression was reversed by treatment with the tyrosine kinase inhibitor herbimycin A or protein kinase A inhibitor H8. Electrophoretic mobility shift assays demonstrated augmented binding in the R but not U3 region. This binding was competitively inhibited by a high-affinity CREB oligodeoxynucleotide and super-shifted with a specific CREB antibody. Treatment of cells with the cyclic AMP analog dibutyryl cyclic AMP also transiently increased the R region binding dramatically. In vitro DNase I footprint analysis identified a protein-binding sequence in the R region which corresponded with suppression. However, this target sequence lacked a conventional CREB-binding site. A 70.5-kDa DNA-binding protein was partially purified by affinity chromatography, along with a 49-kDa protein which reacted with CREB-specific sera. These data demonstrate that HTLV-I LTR suppression is associated with CREB factor binding in the R region, probably by direct interaction with a 70.5-kDa protein, and provide a novel mechanism for maintenance of viral latency.


1996 ◽  
Vol 16 (5) ◽  
pp. 2174-2182 ◽  
Author(s):  
F Bantignies ◽  
R Rousset ◽  
C Desbois ◽  
P Jalinot

To achieve a better understanding of the mechanism of transactivation by Tax of human T-cell leukemia virus type 1 Tax-responsive element 1 (TRE-1), we developed a genetic approach with Saccharomyces cerevisiae. We constructed a yeast reporter strain containing the lacZ gene under the control of the CYC1 promoter associated with three copies of TRE-1. Expression of either the cyclic AMP response element-binding protein (CREB) or CREB fused to the GAL4 activation domain (GAD) in this strain did not modify the expression of the reporter gene. Tax alone was also inactive. However, expression of the reporter gene was induced by coexpression of Tax and CREB. This effect was stronger with the GAD-CREB fusion protein. Analysis of different CREB mutants with this genetic system indicated that the C-terminal 92 amino acid residues, which include the basic domain and the leucine zipper, are necessary and sufficient to mediate transactivation by Tax. To identify cellular proteins binding to TRE-1 in a Tax-dependent manner, this strain was also used to screen a library of human cDNAs fused to GAD. Of five positive clones isolated from 0.75 x 10(6) yeast colonies, four were members of the CREB/activating transcription factor (ATF) family: CREB, two isoforms of the cyclic AMP-responsive element modulator (CREM), and ATF-1. Interestingly, these three proteins can be phosphorylated by protein kinase A and thus form a particular subgroup within the CREB/ATF family. Expression of ATF-2 in S. cerevisiae did not activate TRE-1 in the presence of Tax. This shows that in a eukaryotic nucleus, Tax specifically interacts with the basic domain-leucine zipper region of ATF-1, CREB, and CREM. The fifth clone identified in this screening corresponded to the Ku autoantigen p70 subunit. When fused to GAD, the C-terminal region of Ku was able to activate transcription via TRE-1 but this activation was not dependent on Tax.


Virology ◽  
2002 ◽  
Vol 296 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Zhan Zhang ◽  
Ellen F. Hildebrandt ◽  
Cynthia M. Simbulan-Rosenthal ◽  
Mark G. Anderson

Sign in / Sign up

Export Citation Format

Share Document