scholarly journals An RNA Splicing Enhancer-Like Sequence Is a Component of a Splicing Inhibitor Element from Rous Sarcoma Virus

1998 ◽  
Vol 18 (6) ◽  
pp. 3103-3111 ◽  
Author(s):  
Lisa M. McNally ◽  
Mark T. McNally

ABSTRACT The accumulation in infected cells of large amounts of unspliced viral RNA for use as mRNA and genomic RNA is a hallmark of retrovirus replication. The negative regulator of splicing (NRS) is a longcis-acting RNA element in Rous sarcoma virus that contributes to unspliced RNA accumulation through splicing inhibition. One of two critical sequences located in the NRS 3′ region resembles a minor class 5′ splice site and is required for U11 small nuclear ribonucleoprotein (snRNP) binding to the NRS. The second is a purine-rich region in the 5′ half that interacts with the splicing factor SF2/ASF. In this study we investigated the possibility that this purine-rich region provides an RNA splicing enhancer function required for splicing inhibition. In vitro, the NRS acted as a potent, orientation-dependent enhancer of Drosophila doublesexpre-mRNA splicing, and enhancer activity mapped to the purine-rich domain. Analysis of a number of site-directed and deletion mutants indicated that enhancer activity was diffusely located throughout a 60-nucleotide area but only the activity associated with a short region previously shown to bind SF2/ASF correlated with efficient splicing inhibition. The significance of the enhancer activity to splicing inhibition was demonstrated by using chimeras in which two authentic enhancers (ASLV and FP) were substituted for the native NRS purine region. In each case, splicing inhibition in transfected cells was restored to levels approaching that observed for the NRS. The observation that a nonfunctional version of the FP enhancer (FPD) that does not bind SF2/ASF also fails to block splicing when paired with the NRS 3′ region supports the notion that SF2/ASF binding to the NRS is relevant, but other SR proteins may substitute if an appropriate binding site is supplied. Our results are consistent with a role for the purine region in facilitated snRNP binding to the NRS via SF2/ASF.

1988 ◽  
Vol 8 (11) ◽  
pp. 4858-4867 ◽  
Author(s):  
S Arrigo ◽  
K Beemon

Only a fraction of retroviral primary transcripts are spliced to subgenomic mRNAs; the unspliced transcripts are transported to the cytoplasm for packaging into virions and for translation of the gag and pol genes. We identified cis-acting sequences within the gag gene of Rous sarcoma virus (RSV) which negatively regulate splicing in vivo. Mutations were generated downstream of the splice donor (base 397) in the intron of a proviral clone of RSV. Deletion of bases 708 to 800 or 874 to 987 resulted in a large increase in the level of spliced RSV RNA relative to unspliced RSV RNA. This negative regulator of splicing (nrs) also inhibited splicing of a heterologous splice donor and acceptor pair when inserted into the intron. The nrs element did not affect the level of spliced RNA by increasing the rate of transport of the unspliced RNA to the cytoplasm but interfered more directly with splicing. To investigate the possible role of gag proteins in splicing, we studied constructs carrying frameshift mutations in the gag gene. While these mutations, which caused premature termination of gag translation, did not affect the level of spliced RSV RNA, they resulted in a large decrease in the accumulation of unspliced RNA in the cytoplasm.


1988 ◽  
Vol 8 (11) ◽  
pp. 4858-4867 ◽  
Author(s):  
S Arrigo ◽  
K Beemon

Only a fraction of retroviral primary transcripts are spliced to subgenomic mRNAs; the unspliced transcripts are transported to the cytoplasm for packaging into virions and for translation of the gag and pol genes. We identified cis-acting sequences within the gag gene of Rous sarcoma virus (RSV) which negatively regulate splicing in vivo. Mutations were generated downstream of the splice donor (base 397) in the intron of a proviral clone of RSV. Deletion of bases 708 to 800 or 874 to 987 resulted in a large increase in the level of spliced RSV RNA relative to unspliced RSV RNA. This negative regulator of splicing (nrs) also inhibited splicing of a heterologous splice donor and acceptor pair when inserted into the intron. The nrs element did not affect the level of spliced RNA by increasing the rate of transport of the unspliced RNA to the cytoplasm but interfered more directly with splicing. To investigate the possible role of gag proteins in splicing, we studied constructs carrying frameshift mutations in the gag gene. While these mutations, which caused premature termination of gag translation, did not affect the level of spliced RSV RNA, they resulted in a large decrease in the accumulation of unspliced RNA in the cytoplasm.


1999 ◽  
Vol 73 (3) ◽  
pp. 2394-2400 ◽  
Author(s):  
Craig R. Cook ◽  
Mark T. McNally

ABSTRACT The negative regulator of splicing (NRS) from Rous sarcoma virus suppresses viral RNA splicing and is one of several ciselements that account for the accumulation of large amounts of unspliced RNA for use as gag-pol mRNA and progeny virion genomic RNA. The NRS can also inhibit splicing of heterologous introns in vivo and in vitro. Previous data showed that the splicing factors SF2/ASF and U1, U2, and U11 small nuclear ribonucleoproteins (snRNPs) bind the NRS, and a correlation was established between SF2/ASF and U11 binding and activity, suggesting that these factors are important for function. These observations, and the finding that a large spliceosome-like complex (NRS-C) assembles on NRS RNA in nuclear extract, led to the proposal that the NRS is recognized as a minor-class 5′ splice site. One model to explain NRS splicing inhibition holds that the NRS interacts nonproductively with and sequesters U2-dependent 3′ splice sites. In this study, we provide evidence that the NRS interacts with an adenovirus 3′ splice site. The interaction was dependent on the integrity of the branch point and pyrimidine tract of the 3′ splice site, and it was sensitive to a mutation that was previously shown to abolish U11 snRNP binding and NRS function. However, further mutational analyses of NRS sequences have identified a U1 binding site that overlaps the U11 site, and the interaction with the 3′ splice site correlated with U1, not U11, binding. These results show that the NRS can interact with a 3′ splice site and suggest that U1 is of primary importance for NRS splicing inhibition.


1999 ◽  
Vol 73 (3) ◽  
pp. 2385-2393 ◽  
Author(s):  
Lisa M. McNally ◽  
Mark T. McNally

ABSTRACT Retroviruses require both spliced and unspliced RNA for replication. Accumulation of unspliced Rous sarcoma virus RNA is facilitated in part by a negative cis element in thegag region, termed the negative regulator of splicing (NRS), which serves to repress splicing of viral RNA but can also block splicing of heterologous introns. The NRS binds components of the splicing machinery including SR proteins, U1 and U2, small nuclear ribonucleoproteins (snRNPs) of the major splicing pathway, and U11 snRNP of the minor pathway, yet splicing does not normally occur from the NRS. A mutation that abolishes U11 binding (RG11) also abrogates NRS splicing inhibition, indicating that U11 is functionally important for NRS activity and suggesting that the NRS is recognized as a minor-class 5′ splice site (5′ ss). We show here, using specific NRS mutations to disrupt U11 binding and coexpression of U11 snRNA genes harboring compensatory mutations, that the NRS U11 site is functional when paired with a minor-class 3′ ss from the human P120 gene. Surprisingly, the expectation that the same NRS mutants would be defective for splicing inhibition proved false; splicing inhibition was as good as, if not better than, that for the wild-type NRS. Comparison of these new mutations with RG11 indicated that the latter may disrupt binding of a factor(s) other than U11. Our data suggest that this factor is U1 snRNP and that a U1 binding site that overlaps the U11 site is also disrupted by RG11. Analysis of mutations which selectively disrupted U1 or U11 binding indicated that splicing inhibition by the NRS correlates most strongly with U1 snRNP. Additionally, we show that U1 binding is facilitated by SR proteins that bind to the 5′ half of the NRS, confirming an earlier proposal that this region is involved in recruiting snRNPs to the NRS. These data indicate a functional role for U1 in NRS-mediated splicing inhibition.


2006 ◽  
Vol 80 (19) ◽  
pp. 9634-9640 ◽  
Author(s):  
Jeremy E. Wilusz ◽  
Karen L. Beemon

ABSTRACT The Rous sarcoma virus gag gene contains a cis-acting negative regulator of splicing (NRS) element that is implicated in viral polyadenylation regulation. To study the mechanism of polyadenylation promotion at the viral poly(A) site located over 8 kb downstream, we performed in vitro polyadenylation analysis. RNA containing only the poly(A) site and flanking sequences in the 3′ long terminal repeat (LTR) was not polyadenylated detectably in vitro; however, if the transcript contained the NRS upstream of the LTR, polyadenylation was observed. Insertion of the viral env 3′ splice site sequence between the NRS and the LTR did not alter the level of polyadenylation appreciably. We conclude that the NRS promotes polyadenylation in vitro and can do so without formation of a splicing complex with a 3′ splice site. We then explored the roles of several cellular factors in NRS-mediated polyadenylation. Mutation of the binding sites of U1 and U11 snRNPs to the NRS did not affect polyadenylation, whereas hnRNP H strongly inhibited polyadenylation. We propose a model in which hnRNP H and SR proteins compete for binding to the NRS. Bound SR proteins may bridge between the NRS and the 3′ LTR and aid in the recruitment of the 3′-end processing machinery.


1985 ◽  
Vol 5 (9) ◽  
pp. 2298-2306
Author(s):  
S E Kane ◽  
K Beemon

N6-methyladenosine (m6A) residues are present as internal base modifications in most higher eucaryotic mRNAs; however, the biological function of this modification is not known. We describe a method for localizing and quantitating m6A within a large RNA molecule, the genomic RNA of Rous sarcoma virus. Specific fragments of 32P-labeled Rous sarcoma virus RNA were isolated by hybridization with complementary DNA restriction fragments spanning nucleotides 6185 to 8050. RNA was digested with RNase and finger-printed, and individual oligonucleotides were analyzed for the presence of m6A by paper electrophoresis and thin-layer chromatography. With this technique, seven sites of methylation in this region of the Rous sarcoma virus genome were localized at nucleotides 6394, 6447, 6507, 6718, 7414, 7424, and 8014. Further, m6A was observed at two additional sites whose nucleotide assignments remain ambiguous. A clustering of two or more m6A residues was seen at three positions within the RNA analyzed. Modification at certain sites was found to be heterogeneous, in that different molecules of RNA appeared to be methylated differently. Previous studies have determined that methylation occurs only in the sequences Gm6AC and Am6AC. We observed a high frequency of methylation at PuGm6ACU sequences. The possible involvement of m6A in RNA splicing events is discussed.


1984 ◽  
Vol 4 (8) ◽  
pp. 1508-1514
Author(s):  
A W Stoker ◽  
P J Enrietto ◽  
J A Wyke

Four temperature-sensitive (ts) Rous sarcoma virus src gene mutants with lesions in different parts of the gene represent three classes of alteration in pp60src. These classes are composed of mutants with (i) heat-labile protein kinase activities both in vitro and in vivo (tsLA27 and tsLA29), (ii) heat-labile kinases in vivo but not in vitro (tsLA33), and (iii) neither in vivo nor in vitro heat-labile kinases (tsLA32). The latter class indicates the existence of structural or functional pp60src domains that are required for transformation but do not grossly affect tyrosine kinase activity.


Sign in / Sign up

Export Citation Format

Share Document