scholarly journals Regulation of Rous sarcoma virus RNA splicing and stability.

1988 ◽  
Vol 8 (11) ◽  
pp. 4858-4867 ◽  
Author(s):  
S Arrigo ◽  
K Beemon

Only a fraction of retroviral primary transcripts are spliced to subgenomic mRNAs; the unspliced transcripts are transported to the cytoplasm for packaging into virions and for translation of the gag and pol genes. We identified cis-acting sequences within the gag gene of Rous sarcoma virus (RSV) which negatively regulate splicing in vivo. Mutations were generated downstream of the splice donor (base 397) in the intron of a proviral clone of RSV. Deletion of bases 708 to 800 or 874 to 987 resulted in a large increase in the level of spliced RSV RNA relative to unspliced RSV RNA. This negative regulator of splicing (nrs) also inhibited splicing of a heterologous splice donor and acceptor pair when inserted into the intron. The nrs element did not affect the level of spliced RNA by increasing the rate of transport of the unspliced RNA to the cytoplasm but interfered more directly with splicing. To investigate the possible role of gag proteins in splicing, we studied constructs carrying frameshift mutations in the gag gene. While these mutations, which caused premature termination of gag translation, did not affect the level of spliced RSV RNA, they resulted in a large decrease in the accumulation of unspliced RNA in the cytoplasm.

1988 ◽  
Vol 8 (11) ◽  
pp. 4858-4867 ◽  
Author(s):  
S Arrigo ◽  
K Beemon

Only a fraction of retroviral primary transcripts are spliced to subgenomic mRNAs; the unspliced transcripts are transported to the cytoplasm for packaging into virions and for translation of the gag and pol genes. We identified cis-acting sequences within the gag gene of Rous sarcoma virus (RSV) which negatively regulate splicing in vivo. Mutations were generated downstream of the splice donor (base 397) in the intron of a proviral clone of RSV. Deletion of bases 708 to 800 or 874 to 987 resulted in a large increase in the level of spliced RSV RNA relative to unspliced RSV RNA. This negative regulator of splicing (nrs) also inhibited splicing of a heterologous splice donor and acceptor pair when inserted into the intron. The nrs element did not affect the level of spliced RNA by increasing the rate of transport of the unspliced RNA to the cytoplasm but interfered more directly with splicing. To investigate the possible role of gag proteins in splicing, we studied constructs carrying frameshift mutations in the gag gene. While these mutations, which caused premature termination of gag translation, did not affect the level of spliced RSV RNA, they resulted in a large decrease in the accumulation of unspliced RNA in the cytoplasm.


1998 ◽  
Vol 18 (6) ◽  
pp. 3103-3111 ◽  
Author(s):  
Lisa M. McNally ◽  
Mark T. McNally

ABSTRACT The accumulation in infected cells of large amounts of unspliced viral RNA for use as mRNA and genomic RNA is a hallmark of retrovirus replication. The negative regulator of splicing (NRS) is a longcis-acting RNA element in Rous sarcoma virus that contributes to unspliced RNA accumulation through splicing inhibition. One of two critical sequences located in the NRS 3′ region resembles a minor class 5′ splice site and is required for U11 small nuclear ribonucleoprotein (snRNP) binding to the NRS. The second is a purine-rich region in the 5′ half that interacts with the splicing factor SF2/ASF. In this study we investigated the possibility that this purine-rich region provides an RNA splicing enhancer function required for splicing inhibition. In vitro, the NRS acted as a potent, orientation-dependent enhancer of Drosophila doublesexpre-mRNA splicing, and enhancer activity mapped to the purine-rich domain. Analysis of a number of site-directed and deletion mutants indicated that enhancer activity was diffusely located throughout a 60-nucleotide area but only the activity associated with a short region previously shown to bind SF2/ASF correlated with efficient splicing inhibition. The significance of the enhancer activity to splicing inhibition was demonstrated by using chimeras in which two authentic enhancers (ASLV and FP) were substituted for the native NRS purine region. In each case, splicing inhibition in transfected cells was restored to levels approaching that observed for the NRS. The observation that a nonfunctional version of the FP enhancer (FPD) that does not bind SF2/ASF also fails to block splicing when paired with the NRS 3′ region supports the notion that SF2/ASF binding to the NRS is relevant, but other SR proteins may substitute if an appropriate binding site is supplied. Our results are consistent with a role for the purine region in facilitated snRNP binding to the NRS via SF2/ASF.


1985 ◽  
Vol 5 (9) ◽  
pp. 2298-2306
Author(s):  
S E Kane ◽  
K Beemon

N6-methyladenosine (m6A) residues are present as internal base modifications in most higher eucaryotic mRNAs; however, the biological function of this modification is not known. We describe a method for localizing and quantitating m6A within a large RNA molecule, the genomic RNA of Rous sarcoma virus. Specific fragments of 32P-labeled Rous sarcoma virus RNA were isolated by hybridization with complementary DNA restriction fragments spanning nucleotides 6185 to 8050. RNA was digested with RNase and finger-printed, and individual oligonucleotides were analyzed for the presence of m6A by paper electrophoresis and thin-layer chromatography. With this technique, seven sites of methylation in this region of the Rous sarcoma virus genome were localized at nucleotides 6394, 6447, 6507, 6718, 7414, 7424, and 8014. Further, m6A was observed at two additional sites whose nucleotide assignments remain ambiguous. A clustering of two or more m6A residues was seen at three positions within the RNA analyzed. Modification at certain sites was found to be heterogeneous, in that different molecules of RNA appeared to be methylated differently. Previous studies have determined that methylation occurs only in the sequences Gm6AC and Am6AC. We observed a high frequency of methylation at PuGm6ACU sequences. The possible involvement of m6A in RNA splicing events is discussed.


1984 ◽  
Vol 4 (8) ◽  
pp. 1508-1514
Author(s):  
A W Stoker ◽  
P J Enrietto ◽  
J A Wyke

Four temperature-sensitive (ts) Rous sarcoma virus src gene mutants with lesions in different parts of the gene represent three classes of alteration in pp60src. These classes are composed of mutants with (i) heat-labile protein kinase activities both in vitro and in vivo (tsLA27 and tsLA29), (ii) heat-labile kinases in vivo but not in vitro (tsLA33), and (iii) neither in vivo nor in vitro heat-labile kinases (tsLA32). The latter class indicates the existence of structural or functional pp60src domains that are required for transformation but do not grossly affect tyrosine kinase activity.


1962 ◽  
Vol 115 (1) ◽  
pp. 245-251 ◽  
Author(s):  
Robert M. Dougherty ◽  
Herbert R. Morgan

Chick embryo fibroblasts infected in vitro with Rous sarcoma virus have properties similar to tumor cells when injected into virus-immune chickens. When such virus-transformed fibroblasts are injected into normal chickens, they apparently participate in the production of tumors independent of their release of virus and are thus apparently malignant in vivo.


1990 ◽  
Vol 110 (3) ◽  
pp. 581-595 ◽  
Author(s):  
M Martins-Green ◽  
M J Bissell

The avian gene 9E3/CEF-4, a member of the superfamily of genes that includes KC and gro, is expressed abundantly in exponentially growing cultures of chick embryo fibroblasts (CEFs) and at high levels in CEFs transformed with Rous sarcoma virus (RSV). The product of this gene is a secreted protein that has homologies and structural similarities to inflammatory mediators. The function of 9E3 is obscure and its expression in vivo has not yet been investigated. We studied by in situ hybridization and RNA blots the pattern of 9E3 mRNA distribution in the wings of normal, wounded, and RSV-infected newly hatched chicks. We found that the message for 9E3 is high in specific tissues in normal wings; whereas connective tissue, tendon, and bone express the gene, muscle fibers, endothelium, epidermis, and bone marrow do not. The distribution coincides with that of interstitial collagen. Wounding results in marked elevation of the mRNA within the granulation tissue formed during healing and in adjacent tissues, especially those showing neovascularization. Similar elevation of mRNA occurs immediately adjacent to RSV tumors but, surprisingly, the tumor tissue itself shows no detectable levels of this message. Cells explanted from the tumors and grown in culture also show no expression of 9E3, in marked contrast to the very high level found in similarly cultured RSV-transformed CEFs. These results show that there are intrinsic differences between transformed embryonic cells in tissue culture and RSV target cells in the hatched chick. However, the expression of the gene in the periphery of tumors leaves open the possibility that 9E3 may still be involved in RSV carcinogenesis. The abundant expression of 9E3 in normal tissues indicates that the product of this gene plays a normal physiological role in tissues growing by cell division, perhaps as a growth regulator. The elevated expression of 9E3 in areas of neovascularization, makes it possible that the product of this gene could act as an angiogenic factor. Finally, expression in conjunction with high collagen levels and in wounded tissues may point to a role in wound response and/or repair, possibly via alteration of extracellular matrix.


1999 ◽  
Vol 73 (3) ◽  
pp. 2394-2400 ◽  
Author(s):  
Craig R. Cook ◽  
Mark T. McNally

ABSTRACT The negative regulator of splicing (NRS) from Rous sarcoma virus suppresses viral RNA splicing and is one of several ciselements that account for the accumulation of large amounts of unspliced RNA for use as gag-pol mRNA and progeny virion genomic RNA. The NRS can also inhibit splicing of heterologous introns in vivo and in vitro. Previous data showed that the splicing factors SF2/ASF and U1, U2, and U11 small nuclear ribonucleoproteins (snRNPs) bind the NRS, and a correlation was established between SF2/ASF and U11 binding and activity, suggesting that these factors are important for function. These observations, and the finding that a large spliceosome-like complex (NRS-C) assembles on NRS RNA in nuclear extract, led to the proposal that the NRS is recognized as a minor-class 5′ splice site. One model to explain NRS splicing inhibition holds that the NRS interacts nonproductively with and sequesters U2-dependent 3′ splice sites. In this study, we provide evidence that the NRS interacts with an adenovirus 3′ splice site. The interaction was dependent on the integrity of the branch point and pyrimidine tract of the 3′ splice site, and it was sensitive to a mutation that was previously shown to abolish U11 snRNP binding and NRS function. However, further mutational analyses of NRS sequences have identified a U1 binding site that overlaps the U11 site, and the interaction with the 3′ splice site correlated with U1, not U11, binding. These results show that the NRS can interact with a 3′ splice site and suggest that U1 is of primary importance for NRS splicing inhibition.


2003 ◽  
Vol 77 (11) ◽  
pp. 6482-6492 ◽  
Author(s):  
Roger Chiu ◽  
Duane P. Grandgenett

ABSTRACT Site-directed mutagenesis of recombinant Rous sarcoma virus (RSV) integrase (IN) allowed us to gain insights into the protein-protein and protein-DNA interactions involved in reconstituted IN-viral DNA complexes capable of efficient concerted DNA integration (termed full-site). At 4 nM IN, wild-type (wt) RSV IN incorporates ∼30% of the input donor into full-site integration products after 10 min of incubation at 37°C, which is equivalent to isolated retrovirus preintegration complexes for full-site integration activity. DNase I protection analysis demonstrated that wt IN was able to protect the viral DNA ends, mapping ∼20 bp from the end. We had previously mapped the replication capabilities of several RSV IN mutants (A48P and P115S) which appeared to affect viral DNA integration in vivo. Surprisingly, recombinant RSV A48P IN retained wt IN properties even though the virus carrying this mutation had significantly reduced integrated viral DNA in comparison to wt viral DNA in virus-infected cells. Recombinant RSV P115S IN also displayed all of the properties of wt RSV IN. Upon heating of dimeric P115S IN in solution at 57°C, it became apparent that the mutation in the catalytic core of RSV IN exhibited the same thermolabile properties for 3′ OH processing and strand transfer (half-site and full-site integration) activities consistent with the observed temperature-sensitive defect for integration in vivo. The average half-life for inactivation of the three activities were similar, ranging from 1.6 to 1.9 min independent of the IN concentrations in the assay mixtures. Wt IN was stable under the same heat treatment. DNase I protection analysis of several conservative and nonconservative substitutions at W233 (a highly conserved residue of the retrovirus C-terminal domain) suggests that this region is involved in protein-DNA interactions at the viral DNA attachment site. Our data suggest that the use of recombinant RSV IN to investigate efficient full-site integration in vitro with reference to integration in vivo is promising.


Sign in / Sign up

Export Citation Format

Share Document